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ABSTRACT 
 
We find an exact quantized expression of the Schwarzschild solution to Einstein’s field 
equations utilizing spherical Planck units in a generalized holographic approach.  We 
consider vacuum fluctuations within volumes as well as on horizon surfaces, generating a 
discrete spacetime quantization and a novel quantized approach to gravitation.  When 
applied at the quantum scale, utilizing the charge radius of the proton, we find values for 

the rest mass of the proton within  of the CODATA value and when the 
2010 muonic proton charge radius measurement is utilized we find a deviation of  

 from the proton rest mass. We identify a fundamental mass ratio 
between the vacuum oscillations on the surface horizon and the oscillations within the 
volume of a proton and find a solution for the gravitational coupling constant to the strong 
interaction.  We derive the energy, angular frequency, and period for such a system and 
determine its gravitational potential considering mass dilation.  We find the force range to 
be closely correlated with the Yukawa potential typically utilized to illustrate the 
exponential drop-off of the confining force.  Zero free parameters or hidden variables are 
utilized.   
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1. INTRODUCTION  
 
In 1916, Karl Schwarzschild published an exact solution to Einstein’s field equations for the 
gravitational field outside a spherically symmetric body [1,2]. The Schwarzschild solution 
determined a critical radius,  for any given mass where the escape velocity equals , the 

speed of light.  The region where  is typically denoted as the horizon or event horizon 

and is given by the well known definition 
 

         
                             (1 ) 

 
where  is the gravitational constant, and  is the mass. John Archibald Wheeler in 1967 
described this region of space as a “black hole” during a talk at the NASA Goddard Institute 
of Space Studies. In 1957 Wheeler had already, as an implication of general relativity, 
theorized the presence of tunnels in spacetime or “wormholes” and in 1955, as a 
consequence of quantum mechanics, the concept of “spacetime foam” or “quantum foam” as 
a qualitative description of subatomic spacetime turbulence [3]. The theory predicts that the 
very fabric of spacetime is a seething foam of wormholes and tiny virtual black holes at the 
Planck scale as well as being the source of virtual particle production. In Wheeler’s own 
words: “The vision of quantum gravity is a vision of turbulence – turbulent space, turbulent 
time, turbulent spacetime… spacetime in small enough regions should not be merely 
“bumpy,” not merely erratic in its curvature; it should fractionate into ever-changing, multiply-
connected geometries.  For the very small and the very quick, wormholes should be as 
much a part of the landscape as those dancing virtual particles that give to the electron its 
slightly altered energy and magnetism [Observed as the Lamb shift].” [4] 
 
On the cosmological scale, black hole singularities were initially thought to have no physical 
meaning and probably did not occur in nature. As general relativity developed in the late 20th 
century it was found that such singularities were a generic feature of the theory and 
evidence for astrophysical black holes grew such that they are now accepted as having 
physical existence and are an intrinsic component of modern cosmology. While the 
Schwarzschild solution to Einstein’s field equations results in extreme curvature at the origin 
and the horizon of a black hole, it is widely utilized to give appropriate results for many 
typical applications from cosmology to planetary physics. For instance, the Newtonian 
gravitational acceleration near a large, slowly rotating, nearly spherical body can be derived 

by  where is the gravitational acceleration at radial coordinate , is the 

Schwarzschild radius of a gravitational central body, and is the speed of light.  Similarly, 
Keplerian orbital velocity can be derived for the circular case by 
 

         (2) 

 
where is the orbital radius. This can be generalized to elliptical orbits and of course the 
Schwarzschild radius is utilized to describe relativistic circular orbits or photon spheres for 
rapidly rotating objects such as black holes. There are many more examples of the 
ubiquitous nature of the Schwarzschild solution and its applications to celestial mechanics 
and cosmology. 
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In developments over the past decade event horizons have been demonstrated to be 
dynamically fluctuating regions at a scale where quantum mechanical effects occupy a 
central role.  Early explorations of spacetime fluctuations at the quantum level predicted that 
the vacuum at those scales undergoes extreme oscillations as formulated in the Wheeler 
model. Indeed, in quantum field theory, the vacuum energy density is calculated by 
considering that all the vibrational modes have energies of .  When summed over all 
field modes, an infinite value results unless renormalized utilizing a Planck unit cutoff [5].  
Yet, while the high curvature of general relativity and the vacuum fluctuations of quantum 
field theory converge and meet at the Planck cutoff, efforts to define gravitational curvature 
in a discrete and elegant manner, as in quantum gravity have proven elusive.  
 
In the early 1970s, expanding from Hawking temperature theorems for black hole horizons, 
Bekenstein conjectured that the entropy of a black hole is proportional to the area of its 
event horizon divided by the Planck area times a constant on the order of unity [6].  Hawking 
confirmed Bekenstein’s conjecture utilizing the thermodynamic relationships between energy 
and temperature [7]. 
 

         (3) 

 
where  is the area of the event horizon,  is Boltzmann’s constant, and  is the Planck 
length. The Bekenstein bound conjecture and the entropy of a black hole eventually led to 
the holographic principle (generally given as an analogy to a hologram by Gerard 't Hooft) [8] 
where the covariant entropy bound demands that the physics in a certain region of space is 
described by the information on the boundary surface area, where one bit is encoded by one 

Planck area [8,9].  Since the temperature  determines the multiplicative constant of 

the Bekenstein-Hawking entropy of a black hole which is  
 

          (4) 

 

therefore, Hawking fixes the proportionality constant at  of the surface area, which we 
note is equivalent to the surface area of the equatorial disc of the system. 
 
In this paper, we generalize the holographic principle by utilizing a spherical Planck unit 

rather than a surface area Planck unit,  as a minimum-size vacuum energy oscillator on 
which information encodes, which we term “Planck spherical unit” (PSU). This approach is 
consistent with the dimensional reduction of the holographic principle, which states explicitly 
that all the information of the interior volume of a black hole is encoded holographically on 
it's horizon surface. We consider the interior vacuum energy density ratio, in terms of PSU 
packing, to the surface horizon and find a generalized holographic principle which broadens 
the applicability of the holographic method to other areas of physics, such as gravitation, 
hadronic mass, and confinement.  
 
As a result, an exact quantized derivation of the Schwarzschild solution to Einstein’s field 
equations is found, yielding a novel approach to quantum gravity.  We apply this method to 
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the quantum scale and derive the proton rest mass from geometric considerations alone.  
When the CODATA charge radius value of the proton is employed, our result yields a very 
close first-order approximation within ~4% deviation from the CODATA mass value, the 

difference of which is .  Utilizing the 2010 muonic measurement of the 

proton charge radius however [10], we obtain a more accurate value within  
or ~0.07% deviation.  Employing our generalized holographic approach we predict a precise 
proton charge radius.  Our prediction falls within the reported experimental uncertainty for 
the muonic measurement of the proton charge radius [10].  
  
By further algebraic derivation, we find a fundamental constant we term , defined by the 
mass ratio of vacuum oscillations on the surface horizon to the ones within the volume of the 
proton.  As a result, clear relationships emerge between the Planck mass, the rest mass of 
the proton, and the Schwarzschild mass of the proton or what we term the holographic 

gravitational mass.  Further, we find that our derived fundamental constant  generates 
the gravitational coupling constant to the strong interaction, thus defining the unification 
energy for confinement.  We also derive the energy, angular frequency, and period for such 
a system utilizing our generalized holographic approach.  We find that the period is on the 
order of the interaction time of particle decay via the strong force which is congruent with our 
derivation of the gravitational coupling constant.  Moreover, the frequency of the system 
correlates well with the characteristic gamma frequency of the nucleon decay rate.  Finally, 
we compute the gravitational potential resulting from the mass dilation of the system due to 
angular velocities as a function of radius and find that the gravitational force of such a 
system produces a force range drop-off closely correlated with the Yukawa potential typically 
utilized to define the short range of the strong interaction.   
 
We demonstrate that a quantum gravitational framework of a discrete spacetime defined by 
spherical Planck vacuum oscillators can be constructed which applies to both cosmological 
and quantum scales.  Our generalized holographic method utilizes zero free parameters and 
is generated from simple geometric relationships and algebra, yielding precise results for 
significant physical properties such as the mass of black holes, the rest mass of the proton, 
and the confining nuclear force. 
 
Note that in this paper, we utilize the full significant digits of the Planck length and other 
relevant physical constants as given by CODATA in our derivations to demonstrate the 
accuracy of our results. 
 
2. THE SCHWARZSCHILD SOLUTION FROM PLANCK OSCILLATOR 

SPHERICAL UNITS 
 
In view of the increasingly significant role that quantum field effects or vacuum fluctuations 
have played in current cosmology to characterize the information structure of the horizons of 
astrophysical black holes, as in the holographic principle and its application to entropy [11], 
we examine a hypothetical black hole horizon of the approximate order of magnitude of the 

well documented black hole Cygnus X-1 with a radius of . 
 
In order to better represent the natural systems of harmonic oscillators we initiate our 
calculation by defining a Planck spherical unit (PSU) oscillator of the Planck mass  with a 
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spherical volume  and a Planck length diameter  with a radius of 

.  We utilize a spherical volume for our fundamental spacetime quantum foam PSU 

oscillator instead of the typical Planck area  or Planck volume  in our generalized 
holographic approach.  Therefore a spherical PSU of radius  has a volume of 

 

         (5) 

 

or .  Such a sphere will have an equatorial plane circular area of 

 

         (6) 

 

or , which will be utilized for the purpose of holographic tiling. In 

our generalized holographic approach we consider the volume vacuum oscillation energy in 
terms of Planck spherical units as well as the typical tiling of the surface horizon found in the 
holographic principle entropy calculations of equations (3) and (4). Our considerations of 
information within the volume stems from an exploration of the role of vacuum fluctuations in 
surface gravity and spacetime quantization relationships between the interior information 
network and the external surface tiling. It is important to note that although, in this exercise, 
we tile the surface horizon with Planck circular areas, these are equatorial areas of spherical 
oscillators. 
  
Consequently, we derive the quantity , the number of Planck areas  on the surface  

of the horizon of Cygnus X-1 with a radius of  and find that 
 

         (7) 

 

or .  We calculate  or the quantity of Planck volume oscillators 
 

within the volume  of the interior of the Cygnus X-1 black hole 
 

         (8) 

 

or .  We then examine the relationship between the information network 
of the horizon  and the interior information network of PSU oscillators , then multiply it 

by the Planck mass,  to obtain the mass-energy equivalence of the ratio and we 

determine that 

         (9) 
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where  is the mass derived from this geometric approach, or what 

we term the “holographic gravitational mass”.  This expression can be written as well in 

terms of mass relations by multiplying equation (9) by  

 

         (10) 

where  is the total mass-energy
 
of PSU oscillators within the volume and  is the mass-

energy of PSU oscillators on the surface horizon, so that all terms are Planck mass 
quantities, which clarifies the relationship between masses in the geometry.  Equation (10) 
can then be written as  
 

.         (11) 

 
We then calculate the Schwarzschild mass of a black hole of the same radius as our 
example Cygnus X-1.  Rearranging equation (1) we have 
 

         (12) 

 
where

 
 is the Schwarzschild mass of such a black hole,  is the speed of light and  is 

the gravitational constant.  We obtain the exact same quantity,
 

 

utilizing CODATA values.  Therefore 
 

.         (13) 

 
We find that a simple relationship of the internal PSUs within a given volume, to the discrete 
“pixelation” of the holographic membrane surface horizon of the black hole yields what we 
term the holographic gravitational mass of the object which is equivalent to its classical 
Schwarzschild mass. This of course, is valid for any system, is free of any relativistic 
expressions, and utilizes only discrete Planck quantities, which has implications to quantum 
gravity.   
 
From the above geometric analysis we then perform an algebraic derivation to find an 
elegant formulation of this quantized relationship. Therefore we can write equation (11) in 
terms of equation (7) and  

.       (14) 

 
Utilizing equations (6) and (8) and rearranging terms we have 
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.      (15) 

 
Expanding to the spherical form in terms of  and  and reducing, 

 

     (16) 

 
or, 
 

         (17) 

 
where  is the radius of a system.  Given that , and utilizing equation (11) we now 

obtain what we have previously termed the holographic gravitational mass  as, 

 

.         (18) 

 
Of course now a radius we term the holographic radius  can be calculated for any mass 

, giving the expression 
 

.         (19) 

 
Therefore, we find that the number of discrete Planck masses within any given mass  
multiplied by , which is a discrete quantity, will generate the holographic radius equivalent 
to the well known Schwarzschild radius of equation (1) so that in the case of equation (19) 
we have a non-relativistic form derived from discrete vacuum oscillator Planck quantities 
generating a quantized solution. The geometric equation (9) and the algebraic derivation 
(19) are both simple and meaningful as they clearly demonstrate that the gravitational mass 
of an object can be obtained from discrete quantities based on Planck spherical units.  
Consequently our results are consistent with the dimensional reduction embodied in the 
holographic principle, and thus we have found a unique expression involving the holographic 
gravitational mass, radius, Planck mass, and the mass of any black-hole object that is 
congruent with the usual holographic entropy computation of equations (3) and (4).   
 
Clearly in both cases  and  are involved since Planck entities are derived from 

 and ,   therefore we can write equation (19) as 
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      (20) 

or 
 

.         (21) 

 
Here we arrive to the Schwarzschild expression of equation (1) from geometric 
considerations alone. It then follows that the Schwarzschild solution to Einstein’s field 
equations could have been developed in the late 19th Century by computation of tiling Planck 
quantities independent of spacetime curvature and singularities, near the time when Max 
Planck in 1899 derived his units. His units were, of course, the result of the renormalization 
of the electromagnetic spectrum of black body radiation by the utilization of a quantum of 
action , which confirmed experimental results. Planck quantities are natural units, free of 
any arbitrary anthropocentric measurements, are based on fundamental physical constants, 
and can be defined as, for example, the time it takes a photon to travel one Planck length 
which is the Planck time.  Therefore, in the case of the generalized holographic solution the 
difficulties associated with discontinuities and singularity production are precluded from 
occurring due to the Planck quantization where the presence of , the quantum of angular 
momentum or the quantum of action of the energetic vacuum quantizes spacetime and 
yields a discrete gravitational mass or quantum gravity. 
 
However, if our holographic solution is a correct representation of quantum gravitational 
spacetime structure, then it should be applicable to the quantum world and yield appropriate 
results such as fundamental physical quantities from first principles and geometric 
considerations. 
 
3.  HOLOGRAPHIC MASS AT THE HADRON SCALE 
 
We now apply the above surface to volume relationships of Planck vacuum oscillations of a 
cosmological scale object to the quantum world.  We initially utilize the standard CODATA 

proton charge radius given as  due to the fundamental nature of 

protons in the hadronic picture.  We derive the quantity  as the number of Planck areas 

 on the surface area  of a proton  

 

.         (22) 
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      (23) 

 
or the holographic mass of the surface horizon of the proton.  We then calculate  or the 
number of PSUs within the proton volume  utilizing equation (8), yielding

.   
 
We can now examine the relationship between  and  and find 

 

      (24) 

 
where  is the holographic derivation of the mass of the proton.  The result is a close 

approximation to the measured CODATA value for the proton mass 

 with a  or ~4% deviation from the CODATA 

value.   
 
Therefore a simple reversal of the holographic “pixelation” relationship in equation (11) 
produces a close approximation to the rest mass of the proton; whereas the above 
geometric holographic gravitational mass (which is equivalent to the Schwarzschild solution) 
is generated by dividing the mass of PSUs in the interior by the number of PSUs on the 
surface, conversely the proton rest mass is extrapolated from the mass of PSUs on the 
surface divided by the number of PSUs in the interior. Clearly both equation (11) and it's 
inverse in equation (24) can be utilized to describe a relationship between the interior 
information to the screening on the surface horizon and is consistent with the dimensional 
reduction associated with the holographic approach. In the following sections we will clarify 
the nature of this relationship, which has significant implications to the gravitational coupling 
constant and confinement. 
 
The usual method of determining the charge radius of the proton is to measure the Lamb 
shift of a bound proton-lepton system via spectroscopy. A prior method was to measure the 
Sachs electric form factor with a scattering experiment, such as electron-proton scattering.  
The Sachs form factors are the spatial Fourier transforms of the proton’s charge distribution 
in the Breit frame [12]. Recently, in 2010, an international research team from the Paul 
Scherrer Institute (PSI) in Villigen (Switzerland) and scientists from the Max Planck Institute 
of Quantum Optics (MPQ) in Garching, the Ludwig-Maximilians-Universität (LMU) Munich 
and the Institut für Strahlwerkzeuge (IFWS) of the Universität Stuttgart (both from Germany), 
and the University of Coimbra, Portugal obtained measurements recently published in 
Nature of the spectrum of muonic hydrogen that found a significantly lower value of 

 [10] compared to the CODATA value of the proton charge radius. In 

the case of measuring the Lamb shift of a bound proton-muon system it was anticipated to 
reduce the error by an order of magnitude compared to measurements from proton-electron 
scattering and typical proton-electron spectroscopy [13]. While it did indeed reduce the error 
by an order of magnitude, the fact that the new measurement is five standard deviations 
from the CODATA value has raised significant questions about the implications of this new 
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result on Quantum Electrodynamics, and so far no experimental errors have been found 
despite thorough scrutiny by the physics community [14-20]. 
 
We now proceed to calculate the rest mass of the proton as above, utilizing the new muonic 

hydrogen measured proton charge radius  and find 

, , and . Again utilizing 

equation (24) we obtain 
 

.      (25) 

 
This result is now a much closer approximation to the measured CODATA value for the 

proton mass  with a  or ~0.07% deviation from 

the CODATA value.  This extremely close result is supportive of the new muonic hydrogen 
measurement of the proton charge radius, and of our generalized holographic approach 
applied to the quantum scale. Considering that this method yields an exact solution to the 
gravitational mass of an object, we can now make a prediction of the precise radius of the 
proton from theoretical tenets. Assuming that the current CODATA mass measurement of 
the proton (which has been measured to a high level of precision empirically) is accurate, we 

can solve equation (25) for the radius of an object of mass  by 

utilizing algebraic computations from the geometric consideration. Consequently 
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Therefore the mass of the proton can be simply extrapolated from the relationship of the 
Planck length times the Planck mass divided by the proton charge radius. Again, as in 
section 2 we find a simple and elegant quantized solution to a fundamental physical quantity 
utilizing an intrinsic generalized holographic relationship. 
 

We now can predict a precise radius for the proton, which we term , from the CODATA 

value for the proton mass by inverting equation (29) 
 

      (30) 

 

a difference of  from the muonic measurement of the proton charge 

radius of  and therefore falls within less than one standard 

deviation , or within their reported standard experimental error value 
[10].  More precise measurement may confirm this theoretical result. 
 
4. DETERMINING A FUNDAMENTAL GEOMETRIC MASS RATIO AND THE 

GRAVITATIONAL COUPLING CONSTANT 
 
As in section 2, we now replace  and  in equation (29) by their respective fundamental 

constant Planck unit definitions, to derive deeper meaning. Therefore, canceling terms and 
simplifying 
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.         (34) 

 
This is a significant result as we now observe a direct relationship between the rest mass of 

the proton , the Planck mass , and the Schwarzschild mass or holographic 

gravitational mass , which we denote as  to indicate the holographic gravitational 

mass specific to the proton. Thus, the presence of a strong gravitational potential equivalent 
to the Schwarzschild mass in equation (34) relates the rest mass of the proton to our 
cosmological generalized holographic mass solution, confirming that the holographic 
principle, typically consistent with strong gravitational objects, is potentially involved in the 
strong field confinement environment on the femtometer scale due to Planck fluctuations. 
Here our generalized holographic approach has led us to a direct relationship between a 
cosmological gravitational solution and the Planck scale to produce the mass of a quantum 
object.  From equation (11) 
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where  is the number of PSUs within the interior and  is the number of PSUs on the 
surface horizon, we now clearly discern that both the holographic gravitational mass 
(equivalent to the Schwarzschild mass) and the rest mass of the proton are a consequence 
of the Planck mass , and the geometrical considerations of Planck vacuum oscillators 

alone.   
 
Although equation (35) has a simple and elegant form, we now explore a little further the 

algebra to better understand the geometric relationship between ,  and .   

 
Starting from equation (34) and multiplying by  we have 

 

.       (36) 

 
Expanding  in the denominator with equation (35) and rearranging terms we have 

 

.      (37) 

 

We now express this in terms of and  

 

2

2p
h

m
m

m
′

′

= l

pm m
l

hm hm ′

h

Rm
m

η
= l

R η

m
l

pm ′ m
l hm ′

h hm m′ ′

2 2

2
2 2p h

h h

m m
m m

m m
′ ′

′ ′

= =l l

hm ′

22

22 2h h

m m
m m

RmRm

η

η

′ ′
 

= =  
   
 
 

l l

ll

ρη Rρ



 
 
 
 

Physical Review & Research International, 3(4): 270-292, 2013 
 
 

282 
 

        (38) 

 

where  is the mass of PSUs on the surface horizon and  is the mass of PSUs in the 

interior volume as in equation (10).  Here the geometric mass relationship clearly emerges.  
Significantly, the rest mass of the proton is generated by the square of the simple mass 
relationship of the surface mass of PSUs to the interior mass of PSUs multiplied by the 
holographic gravitational mass of the proton. Of course we can also express this relationship 
in terms of dimensionless quantities.  We divide by  in the numerator and denominator 
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yielding 
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Yet, another step can be taken to further elucidate the nature of the relationship by 
expanding  utilizing equation (9) 
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The relationships between the proton mass, the Planck mass and the holographic 
gravitational mass clearly emerge from this algebraic sequence of equations. One of the 
most significant challenges of modern physics has been to find a comprehensive framework 
to explain the significant discrepancy between the relatively large Planck mass, the mass of 
the proton, and the gravitational force or what is known as the hierarchy problem. Frank 
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Wilczek, whose fundamental contribution of asymptotic freedom to the strong interaction 
theory, states “We see that the question it poses is not, ‘Why is gravity so feeble?’ but rather, 
‘Why is the proton’s mass so small?’ For in natural (Planck) units, the strength of gravity 
simply is what it is, a primary quantity, while the proton’s mass is the tiny number...” [21] 
 
Here the hierarchy problem between the Planck mass and the proton rest mass is resolved 
as we clearly demonstrate that the rest mass of the proton is a function of the Planck 
vacuum oscillators holographic surface to volume geometric relationship of spacetime, the 
energy levels of which include the gravitational mass-energy  derived from the same 

primary quantity of Planck entities. We express the relationship of the proton surface horizon 
to its volume Planck oscillators as a fundamental constant we term  
 

 

      (44) 

 
which appears as a fundamental geometric ratio from equations (38) to (43), whether in 
dimensionless quantities or in mass ratios. The inverse relationship  
 

       (45) 

 
is clearly seen in equation (41) where  is fully expanded in its holographic expression 

from equation (9) of section 2. Therefore,  and its inverse relate the gravitational curvature 

of a Schwarzschild metric to the quantum scale so that 
 

       (46) 

 
and relates the proton rest mass to the Planck mass 
 

         (47) 

 
and of course the Planck mass to the holographic gravitational mass is  

  
.         (48) 

 
Consequently  acts as a fundamental constant relating the background Planck vacuum 

fluctuation field to the cosmological and quantum scale where it may be the source of 
confinement so that scaling from the proton rest mass to the Planck mass requires a 
proportional mass-energy conversion of  while from the Planck mass to the holographic 
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gravitational mass requires a factor of , which yields a total scaling from the proton rest 

mass to the holographic gravitational mass of 
 

.       (49) 
 

Exploring the  relationships relative to quantum gravity confinement, we utilize equation 

(47), and we determine 

.        (50) 

 
Squaring both sides 
 

.         (51) 

 

Multiplying both sides by  we have 

 

.       (52) 

 

Where  is the exact value for the coupling constant between 
gravitation and confinement at the proton scale or the strong interaction. The typical 
computation given for the gravitational coupling constant is 
 

   (53) 

 
where  is the elementary charge and  is the fine structure constant. Note that the slightly 

different value of equation (53) from  of equation (52) is due to our utilization of the 2010 

muonic measurement of the radius of the proton, and that utilizing our predicted radius  

from equation (30) yields the exact value.  
 
Hence the gravitational force coupling constant is computed directly from the geometric 
relationship of the Planck oscillator surface tiling to the interior volume oscillations of the 

proton which as well clearly relates the Planck mass to the proton rest mass, and the  
ratio of the proton mass to the holographic gravitational mass or the Schwarzschild mass.  
Consequently, the unifying energy required for confinement is generated by holographic 
derivations directly from first principles of simple geometric Planck vacuum fluctuation 
relationships. Furthermore, the rest mass of the proton is computed without requiring the 
complexities introduced by a Higgs mechanism, which also utilizes a non-zero vacuum 
expectation value, but which only predicts 1 to 5 percent of the mass of baryons, and in 
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which the Higgs particle mass itself is a free parameter [22]. The current QCD approach 
accounts for the remaining mass of the proton by the kinetic back reaction of massless 
gluons interacting with the confining color field utilizing special relativity to determine 
masses. Yet it is critical to note that after almost a century of computation, there is still no 
analytical solution to the Lattice QCD model for confinement. This problem is thought to be 
one of the most obscure processes in particle physics and a Millennium Prize Problem from 
the Clay Mathematics Institute has been issued to find a resolution [23,24]. Since there is no 
analytical solution to LQCD and no framework for the energy source necessary for 
confinement, associating the remaining mass of the proton to the kinetic energy of massless 
gluons is based on tenuous tenets.  
 
Our results demonstrate that the holographic gravitational mass-energy of the proton  is 

the unification energy scale for hadronic confinement and that the mass of nucleons is a 
direct consequence of vacuum fluctuations.   Keeping in mind that a neutron quickly decays 
into a proton when free of the nucleus, we have therefore addressed the fundamental nature 
of the nucleon by deriving the proton rest mass and the confining force from holographic 
considerations. In future publications we will address the confinement string-like gluon jet 
flux tube structures of the QCD vacuum model as potentially arising from high curvature 
within the spacetime Planck vacuum collective behavior background, acting as vortices near 
the holographic screen topological horizon. This will be addressed utilizing an extended 
center vortex picture which has been significantly developed by 't Hooft [25] and in which the 
surface area of a Wilson loop is related to a confining force. In the next section, we explore 
the energy and angular frequency associated with our model and we compute the 
gravitational potential range of our confining force utilizing special relativity.   
 
5. FREQUENCY, ENERGY AND THE YUKAWA POTENTIAL  
 
From equations (29) and (47) we have 
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Dividing by  on both sides we find 
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Calculating Einstein’s mass-energy equivalence for the proton we have 
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         (58) 
 

where  is the Planck energy.  Now we expand the terms 

 

. (59) 

 
From equation (56) it follows that 
 

.        (60) 

 

Given that , then 

 

.       (61) 

 

Thus we have obtained an expression for the energy where  is the circumference 

of the proton and the angular frequency .  Therefore the energy of such a system 

can be written in terms of  as  which yields a frequency  
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characteristic to high-energy nuclear gamma emission, and a period of  
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where  is typically given as the interaction time of the strong force [26].  From 

equation (58) we find that  multiplied by the Planck energy yields an angular frequency 

with a period of , which is the time it takes for a particle to decay via the strong interaction.  

Hence from the generalized holographic geometric relations of Planck entities, we have 
derived clear quantum gravitational mass-energy formulations that define the characteristics 
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of the strong nuclear force, such as the energies to produce it from gravitational coupling 
and its interaction time.   
 
Yet, the short range of the nuclear force as defined by the Yukawa potential demands that 

the force strength drops off at an exponential rate close to the horizon where . To 

explore this force strength to radius relation in our approach, we begin by refining our 
derivation from reference [27] where we theorize that the difference between the 
Schwarzschild energy potential and the rest mass of the proton may be the result of mass 
dilation near the horizon where velocity is relativistic. Therefore, we begin with the known 
relativistic mass dilation expression  
 

         (64) 

 

where  is a rest mass and  is the dilated mass and  is the velocity.  Solving for , 

we find 
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Substituting  and  
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Therefore the dilated mass-energy yielding the Schwarzschild unifying energy potential 

occurs at  extremely close to 1. We compute the result and examine how close  is to  

and find  
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That is, the Schwarzschild energy potential is reached when  is  less than , 

which can be computed as well, to a high degree of accuracy, to be .  We now seek an 

expression for  as a function of utilizing an orbital velocity formula.  Our purpose is to 
identify velocities at the Schwarzschild horizon or the holographic horizon described in 
earlier sections. The use of relativistic velocity equations produces results describing 
velocities at the photon sphere or the ergosphere in the case of the Kerr Metric where the 
ergosurface is situated at 1.5 times the Schwarzschild radius at the equator (the photon 
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sphere) and is oblate so that the poles are coincident with the Schwarzschild surface.  We 
note that the relativistic photon sphere solution corresponds closely with the Compton 
wavelength of the proton. However, for our purpose in this work our intent is to compute the 
velocity at the Schwarzschild surface or holographic surface rather than the ergosphere. For 
that purpose a simple semi-classical form can be utilized. Therefore  
 

      (68) 

 

and multiplying by  in the numerator and denominator and utilizing the Schwarzschild 
radius equation 
 

.        (69) 

 
Substituting  into the mass dilation equation (64) we have 

 

.     (70) 

 

Substituting  for  and  for , we can derive that the radius at which the unification 

energy  is achieved due to mass dilation can be computed as 

 

 (71) 

 

or the dimensionless quantity . Consequently we can assert 

for all intent and purposes, that the Schwarzschild mass occurs at or extremely close to the 

horizon. We now compute the mass dilation from the velocity found at  from  utilizing 

equation (70) and find  
 

   (72) 

 

where  is the dilated mass at one Planck length from . Evidently an asymptotic drop of 

the dilated mass-energy  occurs, reducing by some 28 orders of magnitude within one 
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Planck length from the horizon. We note that  is equivalent to the geometric mean 

 between the Planck mass and the rest mass of the proton, which may represent a 

harmonic relationship between  and . 

 
We now utilize equation (70) to compute mass dilation as a function of radius, which we 

convert to a gravitational energy potential . We graph our results and compare them 
with the Yukawa potential, see Fig. 1a. 
 

 
 

Fig. 1.  (a) The relativistic gravitational potential  resulting from mass dilation near 

the horizon .  (b) The Yukawa potential  typically given as the short range energy 

potential of the strong force where  is the hard-core surface potential and  is the 
inverse screening length (inverse Debye length) 

 
From Fig. 1(a) we find that the gravitational potential from the mass dilation of a proton due 
to the angular velocity of an accelerated frame generates an asymptotic curve with a force 
potential drop-off as a function of characteristic of the short range force of nuclear 
confinement equivalent to the Yukawa potential in Fig. 1(b). Therefore, we have derived a 
relativistic source for the confining energy with a quantum gravitational potential equivalent 
to the unification energy of a Schwarzschild mass or the holographic gravitational mass of 
the proton , yielding a gravitational coupling with a Yukawa-like short range, and the 

appropriate interaction time of the strong force , resulting in an analytical solution to 

confinement.  These results are derived from first principles and classical considerations 
alone, with zero free parameters or hidden variables, and extend our generalized 
holographic solution to generate a complete picture of confinement whether at the quantum 
scale or the cosmological scale of black holes. Furthermore, considerations of equations 
(38) and (43), where the rest mass of the proton is derived from relationships of Planck 
oscillators PSUs of an energetic structured vacuum at the holographic horizon, may provide 
us with a source for mass. This is analogous to the non-zero vacuum expectation value of 
the Higgs field where the Yukawa interaction describes the coupling between the Higgs 
mechanism and massless quark and lepton fields or fermions. However, this Higgs 
mechanism only accounts for a small percentage of the mass of baryons where the rest is 
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thought to be due to the mass added by the kinetic energies of massless gluons inside the 
baryons. Our generalized holographic model accounts for all of the rest mass of protons and 
the energy of confinement in addition to predicting the mass of cosmological objects directly 
out of geometric considerations of the energetic vacuum. 
 
6.  CONCLUSION 
 
We have generalized the holographic principle to considerations of spherical tiling of Planck 
vacuum fluctuations within volumes as well as on horizon surfaces. From these discrete 
spacetime quantization relationships we extract the Schwarzschild solution to Einstein’s field 
equations, generating a novel quantized approach to gravitation. We apply this resulting 
quantum gravitational method to the nucleon to confirm its relevance at the quantum scale 

and we find values for the rest mass of the proton within  or ~4% deviation 

from the CODATA value and  or ~0.07% deviation when the 2010 muonic 
radius measurement is utilized. As a result, we predict a precise proton charge radius 
utilizing our holographic method which falls within the reported experimental uncertainty for 
the muonic measurement of the proton charge radius. More precise experiments in the 
future may confirm our predicted theoretical proton charge radius. 
 
We determine a fundamental constant  defined by the mass ratio of vacuum oscillations on 

the surface horizon to the ones within the volume of the proton. As a result, clear 
relationships emerge between the Planck mass, the rest mass of the proton, and the 
Schwarzschild mass of the proton or what we term the holographic gravitational mass.  

Furthermore, we find that  generates the coupling constant between gravitation and the 
strong interaction, thus defining the unification energy for confinement. We also derive the 
energy, angular frequency, and period for such a system utilizing our holographic approach 
and find that the frequency is the characteristic gamma frequency of the nucleon and the 
period is on the order of the interaction time of particle decay via the strong force. Finally, we 
calculate the mass dilation due to velocity as a function of radius and plot the resulting 
gravitational potential range. We find the range to be a close correlation to the Yukawa 
potential typically utilized to illustrate the sharp drop-off of the confining force. In future work 
we will examine the application of this approach to more complex systems. We will consider 
as well some of the seminal work done in defining maximal particle momentum and it's 
applicability to our approach [28]. 
 
In this paper, we demonstrate that a quantum gravitational framework of a discrete 
spacetime defined by spherical Planck vacuum oscillators can be constructed which applies 
to cosmology and quantum scale. Our generalized holographic method utilizes zero free 
parameters and is generated from simple geometric relationships and algebra, yielding 
precise results for significant physical properties. In the words of Einstein, “One can give 
good reasons why reality cannot at all be represented by a continuous field. From the 
quantum phenomena it appears to follow with certainty that a finite system of finite energy 
can be completely described by a finite set of numbers (quantum numbers). This does not 
seem to be in accordance with a continuum theory and must lead to an attempt to find a 
purely algebraic theory for the representation of reality.” [29]. 
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