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In this paper, we study the trajectories and singular points of two-dimensional fractional-order planar autonomous linear system
involving the Caputo-Fabrizio fractional derivative. By the corresponding fractional integral of the Caputo-Fabrizio fractional
derivative, we obtain the analytical solutions for the fractional-order planar autonomous linear system, and then, we discuss
the behavior of the trajectories for the mentioned autonomous linear system. Furthermore, we consider the existence of
singular points in the trajectories. We discuss the conditions under which the singular point is stable or unstable. By
determining the value range of the parameters, we obtain the theorems on the type of singular points. Finally, some examples
are given to verify the analysis for the mentioned autonomous linear system.

1. Introduction

A fractional differential equation is an equation which
contains fractional derivatives. There are many forms of frac-
tional derivatives, such as the Riemann-Liouville, Grünwald-
Letnikov, and Caputo fractional derivatives. Podlubny sum-
marized and studied the basic theory of fractional differential
and fractional differential equation in [1]. About fractional
differential equation, there are many results; Albadarneh
et al. [2, 3] considered the numerical approach of the
Riemann-Liouville and Caputo fractional derivative opera-
tors. Lin and Xu [4] studied the finite difference/spectral
approximation of time fractional diffusion equations.
Zhuang et al. [5] studied the numerical method of variable-
order fractional advection diffusion equation with nonlinear
source term. Nieto studied numerical solutions of fractional
logistic ordinary differential equations in [6]. Liu et al. stud-
ied the RBF-FD semidiscrete numerical solution of time frac-
tional convection diffusion equation in [7]. It has been found
that the behavior of many physical systems can be properly
described by using the fractional-order system theory. A
fractional-order system means a system described by a frac-
tional differential equation or fractional integral equation or

a system of such equations. There are many results about
autonomous systems; one can refer to [8–11]. Meanwhile,
the fractional-order systems have been studied by many
scholars; for example, Albadarneh et al. studied the analytical
solutions of linear and nonlinear incommensurate fractional-
order coupled systems in [12]. Ahmad and Harb considered
autonomous chaotic systems of integer and fractional orders
in [13]. Li and Chen studied the fractional-order Chen sys-
tem and its control in [14]. Kingni et al. considered three-
dimensional chaotic autonomous system and its fractional-
order form in [15]. In [16], Caputo and Fabrizio present a
new definition of fractional derivative with a smooth kernel.
Losada and Nieto studied the properties of a new fractional
derivatives without singular kernels in [17], and they also
studied the special cases of the Caputo-Fabrizio and
Atangana-Baleanu derivatives in [18]. Akman et al. studied
the new discretization scheme of the Caputo-Fabrizio deriv-
atives in [19]. Xu and Jian considered unsteady rotating elec-
troosmotic flow with the time-fractional Caputo-Fabrizio
derivative in [20]. Caputo and Fabrizio [21] focused on the
applications of the Caputo-Fabrizio derivative to partial dif-
ferential equation. Owolabi studied the calculation and anal-
ysis of the Caputo-Fabrizio derivatives of pseudoflat algae
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species model in [22]. Haq et al. studied a new approach for
the qualitative study of vector born disease using the Caputo-
Fabrizio derivative in [23]. Fardi and Khan proposed a finite
difference spectral method for moving/nonmoving fractal
transport model based on the Caputo-Fabrizio fractional
derivative in [24]. Harrouche et al. considered the computa-
tional algorithm for solving uncertain pharmacokinetic
models with the nonsingular nuclear Caputo-Fabrizio frac-
tional derivative in [25]. In [26], Zhang and Li considered
the exponential Euler schemes for the Caputo-Fabrizio
fractional-order differential equations with multiple delays.

In this paper, we consider the Caputo-Fabrizio
fractional-order planar autonomous real linear system. The
two-dimensional fractional-order autonomous system is of
the form

Dα
t X tð Þ = AX tð Þor

Dα
t x tð Þ = a11x tð Þ + a12y tð Þ,

Dα
t y tð Þ = a21x tð Þ + a22y tð Þ,

(
ð1Þ

where

0 < α < 1,

X tð Þ =
x tð Þ
y tð Þ

 !
,

A =
a11 a12

a21 a22

 !
:

ð2Þ

The fractional derivative Dα
t xðtÞ is the Caputo-Fabrizio frac-

tional derivative with 0 < α < 1, defined as (one can see [16])

Dα
t x tð Þ = 1

1 − α

ðt
0
e−α t−sð Þ/ 1−αð Þx′ sð Þds: ð3Þ

For the Caputo-Fabrizio fractional derivative, the corre-
sponding fractional integral of a function xðtÞ is that

I α
t x tð Þ = 1 − αð Þ x tð Þ − x 0ð Þ½ � + α

ðt
0
x sð Þds, ð4Þ

where xð0Þ is the initial condition; one can refer to [17].
Thus, we have

I α
tD

α
t x tð Þ = x tð Þ + c, ð5Þ

where c is an arbitrary constant.
The main interest in studying (1) is twofold: the first one

is that a large number of dynamic processes in applied sci-
ences are governed by such systems; the second one is that
the qualitative behavior of its solutions can be illustrated
through the geometry in the xy-plane.

The results for trajectories and singular points can be
found in [27–29]. To the best of our knowledge, the only
known example of fractional-order dynamical systems for
trajectories and singular points can be found in [27], where
the fractional derivative is in the Caputo sense. And similar

results of fractional-order autonomous systems with the
Caputo-Fabrizio fractional derivative have not been found.
The main goal of this paper is to study the trajectories and
singular points of two-dimensional fractional-order planar
autonomous linear systems, where the fractional derivative
is in the Caputo-Fabrizio sense. In our paper, the undefined
terms and notation will follow [8, 10].

2. Solution of Fractional Planar Autonomous
Linear Systems

In this section, we consider fractional-order planar real lin-
ear system (1) under the assumption that det ðAÞ ≠ 0. We
know that system (1) has a unique singular point Oð0, 0Þ if
and only if det ðAÞ ≠ 0. By the analysis in [30], we know that
system (1) will become

Dα
t
~X tð Þ = T−1AT ~X tð Þ = B~X tð Þ, ð6Þ

where T is a nonsingular matrix, XðtÞ = T ~XðtÞ, and ~XðtÞ =
½uðtÞ, vðtÞ�′. And B = T−1AT is one of the following normal
forms:

L λ, μð Þ =
λ 0
0 μ

 !
,

M λð Þ =
λ 0
1 λ

 !
,

R η, γð Þ =
η γ

−γ η

 !
:

ð7Þ

Here, λ, μ, η and γ are real numbers with μ ≠ 0 and γ > 0.
The above three cases are denoted by L for left, M for mid-
dle, and R for right, respectively. If p2 − 4q > 0, we have the
real case L . If p2 − 4q < 0, we have the complex case R. If
p2 − 4q = 0, the case L or M occurs depending on whether
λ = μ has two linearly independent eigenvectors.

If det ðAÞ ≠ 0 and a12 = a21 = 0, system (1) will become
(6) with case L . Next, we mainly consider the solution of
system (1) for the case L . This implies that λ = a11 and μ
= a22. Thus, system (1) will become

Dα
t x tð Þ = λx tð Þ,

Dα
t y tð Þ = μy tð Þ:

(
ð8Þ

Observe that for α = 1, system (8) is recovered to the
classical autonomous system as follows:

x′ tð Þ = λx tð Þ,
y′ tð Þ = μy tð Þ,

(
ð9Þ

which has the solutions xðtÞ = c1e
λt and yðtÞ = c2e

μt .
For A =Lðλ, μÞ, the following theorem can be obtained.
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Theorem 1. Let x0 and y0 be the initial conditions of system
(8); by (4) and (5), we get the solutions of system (8) which are
xðtÞ = c1e

ðλα/ð1−λ+λαÞÞt and yðtÞ = c2e
ðμα/ð1−μ+μαÞÞt , where c1 =

x0 and c2 = y0.

Proof. Let xðtÞ and yðtÞ be the solutions of (8). By (4) and
(5), we get that

x tð Þ + c1 = λI α
t x tð Þ = λ 1 − αð Þ x tð Þ − x 0ð Þ½ � + λα

ðt
0
x sð Þds,

y tð Þ + c2 = μI α
t y tð Þ = μ 1 − αð Þ y tð Þ − y 0ð Þ½ � + μα

ðt
0
y sð Þds:

8>>><
>>>:

ð10Þ

Taking the first derivative both sides of (10), we get

x′ tð Þ = λ 1 − αð Þx′ tð Þ + λαx tð Þ,
y′ tð Þ = μ 1 − αð Þy′ tð Þ + μαy tð Þ:

(
ð11Þ

By (11), for 1 − λ + λα ≠ 0 and 1 − μ + μα ≠ 0, the analyt-
ical solutions of system (8) with 0 < α < 1 are given by

x tð Þ = c1e
λαt/ 1−λ+λαð Þ,

y tð Þ = c2e
μαt/ 1−μ+μαð Þ,

(
ð12Þ

where c1 = x0 and c2 = y0 are real constants.

If A =MðλÞ, then system (1) will become as follows:

Dα
t x tð Þ = λx tð Þ,

Dα
t y tð Þ = x tð Þ + λy tð Þ:

(
ð13Þ

Observe that for α = 1, system (13) is recovered to the
classical autonomous system as follows:

x′ tð Þ = λx tð Þ,
y′ tð Þ = x tð Þ + λy tð Þ:

(
ð14Þ

Similar with the case A =Lðλ, μÞ, we can get the follow-
ing theorem for A =MðλÞ.

Theorem 2. Let x0 and y0 be the initial conditions of sys-
tem (13); then, the solutions of system (13) are xðtÞ = c1
eðλα/ð1−λ+λαÞÞt and yðtÞ = ðc1αt/ð1 − λ + λαÞ2 + c2Þ
eðλα/ð1−λ+λαÞÞt , where c1 = x0 and c2 = y0.

If A =Rðη, γÞ, then system (1) will become as follows:

Dα
t x tð Þ = ηx tð Þ + γy tð Þ,

Dα
t y tð Þ = −γx tð Þ + ηy tð Þ:

(
ð15Þ

Observe that for α = 1, system (15) is recovered to the
classical autonomous system as follows:

x′ tð Þ = ηx tð Þ + γy tð Þ,
y′ tð Þ = −γx tð Þ + ηy tð Þ:

(
ð16Þ

Similar with the case A =Lðλ, μÞ, we can get the follow-
ing theorem for A =Rðη, γÞ.

Theorem 3. Let x0 and y0 be the initial conditions of system
(15). Then, the solutions of system (15) are xðtÞ = c1e

η1t cos
ð−γ1t + c2Þ and yðtÞ = c1e

η1t sin ð−γ1t + c2Þ, where η1 = ðηα
− ðα − α2Þðη2 + γ2ÞÞ/ðð1 − η + ηαÞ2 + ðγ − γαÞ2Þ and γ1 = γα

/ðð1 − η + ηαÞ2 + ðγ − γαÞ2Þ, and c1, c2 satisfy that x0 = c1
cos c2 and y0 = c1 sin c2.

3. Singular Points in the Solution Trajectories

In this section, we discuss the trajectories and singular points
of (8), (13), and (15), respectively. Since det ðAÞ ≠ 0, then
Oð0, 0Þ is the unique singular point of (8), (13), and (15).
Further, we investigate the distribution of trajectories in
the neighborhood of point Oð0, 0Þ. By (11), we know that
x = 0 and y = 0 are the trajectories of (8), respectively
(strictly speaking, x = 0 contains three trajectories: x = 0, y
> 0, x = 0, y < 0, and x = 0, y = 0; for convenience, we simply
say that x = 0 is trajectory). Similarly, we can get that x = 0 is
the trajectory of (13).

By (12), we get that

x
c1

� �μ/ 1−μ+μαð Þ
= y

c2

� �λ/ 1−λ+λαð Þ
or y = cxμ 1−λ+λαð Þ/ λ 1−μ+μαð Þð Þ:

ð17Þ

where c is an arbitrary constant.
The picture of all trajectories of a system is called the

phase portrait of the system. Since the solutions of (8) can
be determined explicitly, a complete description of its phase
portrait can be given. However, as we have seen earlier, the
nature of the solutions of (8) depends on the eigenvalues
of the matrix A. Thus, the phase portrait of (8) depends
almost entirely on the values of λ and μ. For this, there are
several different cases which must be studied separately. In
the following, we investigate the case L and construct the
phase portraits of system (8). Since det ðAÞ ≠ 0, it follows
that λμ ≠ 0; thus, we will consider three cases as follows.

Case 1. λ = μ.
If λ = μ, it follows that y = cx. Therefore, the trajectories

are half-lines leaving or entering singular point Oð0, 0Þ. By
(12), if λ < 0, then λα/ð1 − λ + λαÞ = μα/ð1 − μ + μαÞ < 0.
Thus, both xðtÞ and yðtÞ tend to zero as t⟶ +∞ (singular
point Oð0, 0Þ is called stable node). If λ > 0, however, there
are two cases occur as the different selection of α. The two
cases are λα/ð1 − λ + λαÞ = μα/ð1 − μ + μαÞ < 0 and 0 < λα/
ð1 − λ + λαÞ = μα/ð1 − μ + μαÞ. If λα/ð1 − λ + λαÞ = μα/ð1 −
μ + μαÞ < 0, then the result is the same as λ < 0. If 0 < λα/ð
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1 − λ + λαÞ = μα/ð1 − μ + μαÞ, then all solutions tend to +∞
as t⟶ +∞ (singular point Oð0, 0Þ is called unstable node).
The phase portraits of this case can be found in Example 1.

In the following cases, we assume that λ ≠ μ and con-
sider Case 2 and Case 3.

Case 2. λμ > 0.
In this case, we will consider two subcases, that is λ < 0

and μ < 0 or λ > 0 and μ > 0.
Subcase 1. λ < 0 and μ < 0
We may assume that μ < λ < 0 (otherwise, we can

exchange x and y). Thus, we get that ðμð1 − λ + λαÞÞ/ðλð1
− μ + μαÞÞ > 1. Otherwise, ðμð1 − λ + λαÞÞ/ðλð1 − μ + μαÞÞ
≤ 1; this implies that μ ≥ λ, a contradiction. By (17), the tra-
jectories are a family of parabolas which tangent to the x
-axis at the origin, except x = 0 and y = 0. And both xðtÞ
and yðtÞ tend to zero as t⟶ +∞ (singular point Oð0, 0Þ
is called stable node).

Subcase 2. λ > 0 and μ > 0
We may assume that λ > μ > 0 (otherwise, we can

exchange x and y). In this subcase, one of the following
holds.

(i) ðμð1 − λ + λαÞÞ/ðλð1 − μ + μαÞÞ > 1. This implies
that 1 − λ + λα < 0 and 1 − μ + μα < 0

(ii) 0 < ðμð1 − λ + λαÞÞ/ðλð1 − μ + μαÞÞ < 1. This
implies that 1 − λ + λα > 0 and 1 − μ + μα > 0

(iii) ðμð1 − λ + λαÞÞ/ðλð1 − μ + μαÞÞ < 0. This implies
that 1 − λ + λα < 0 and 1 − μ + μα > 0

For (i) of Subcase 2 of Case 2, by (17), the trajectories are
a family of parabolas which tangent to the x-axis at the ori-
gin (stable node), except x = 0 and y = 0. For (ii) of Subcase 2
of Case 2, by (17), the trajectories are a family of parabolas
which tangent to the y-axis at the origin (unstable node),
except x = 0 and y = 0. For (iii) of Subcase 2 of Case 2, by
(17), except x = 0 and y = 0, the trajectories are a family of
hyperbolas which take x = 0 and y = 0 as asymptotes. In this
case, ðxðtÞ, yðtÞÞ will stay away from ð0, 0Þ as t⟶ +∞, and
the origin is called saddle point which is unstable.

The phase portraits of Case 2 can be found in Example 2.

Case 3. λμ < 0.
In this case, we will consider two subcases, that is, λ >

0 > μ or λ < 0 < μ.
Subcase 1. λ > 0 > μ
In this subcase, one of the following holds.

(i) λα/ð1 − λ + λαÞ < 0 and μα/ð1 − μ + μαÞ < 0
(ii) λα/ð1 − λ + λαÞ > 0 and μα/ð1 − μ + μαÞ < 0

For (i) of Subcase 1 of Case 3, by (17), the trajectories are
a family of parabolas which tangent to the y-axis at the ori-
gin (stable node), except x = 0 and y = 0. For (ii) of Subcase 1
of Case 3, by (17), except x = 0 and y = 0, the trajectories are

a family of hyperbolas which take x = 0 and y = 0 as asymp-
totes. In this case, ðxðtÞ, yðtÞÞ will stay away from ð0, 0Þ as
t⟶ −∞, and the origin is called saddle point which is
unstable. The phase portraits of this case can be found in
Example 3.

Subcase 2. λ < 0 < μ
In this subcase, one of the following holds.

(i) μα/ð1 − μ + μαÞ < 0 and λα/ð1 − λ + λαÞ < 0
(ii) μα/ð1 − μ + μαÞ > 0 and λα/ð1 − λ + λαÞ < 0

For Subcase 2 of Case 3, the analysis is similar to Subcase
1 of Case 3. For (i) of Subcase 2 of Case 3, by (17), the tra-
jectories are a family of parabolas which tangent to the y
-axis at the origin (stable node), except x = 0 and y = 0. For
(ii) of Subcase 2 of Case 3, by (17), except x = 0 and y = 0,
the trajectories are a family of hyperbolas which take x = 0
and y = 0 as asymptotes. In this case, ðxðtÞ, yðtÞÞ will stay
away from ð0, 0Þ as t⟶ +∞, and the origin is called saddle
point which is unstable. The phase portraits of this case can
be found in Example 4.

We summarize the above analysis in the following theo-
rem for A =Lðλ, μÞ.

Theorem 4. For the fractional-order planar autonomous lin-
ear system (1), let λ and μ be the eigenvalues of the matrix A
with a12 = a21 = 0. Then system (1) will become system (8).
Then, the behavior of its trajectories near the singular point
Oð0, 0Þ is as follows.

(i-1) Stable node, if λ and μ are equal and negative
(i-2) Stable node, if λ and μ are equal and positive, and

λα/ð1 − λ + λαÞ = μα/ð1 − μ + μαÞ < 0 for some α
(i-3) Unstable node, if λ and μ are equal and positive, and

λα/ð1 − λ + λαÞ = μα/ð1 − μ + μαÞ > 0 for some α
(ii-1) Stable node, if λ and μ are distinct and negative
(ii-2) Stable node, if λ and μ are distinct and positive, and

ðμð1 − λ + λαÞÞ/ðλð1 − μ + μαÞÞ > 1 for some α
(ii-3) Unstable node, if λ and μ are distinct and positive,

and 0 < ðμð1 − λ + λαÞÞ/ðλð1 − μ + μαÞÞ < 1 for some α
(ii-4) Saddle point (unstable), if λ and μ are distinct and

positive, and ðμð1 − λ + λαÞÞ/ðλð1 − μ + μαÞÞ < 0 for some α
(iii-1) Stable node, if λ and μ are of opposite sign, and

ðμð1 − λ + λαÞÞ/ðλð1 − μ + μαÞÞ > 0 for some α
(iii-2) Saddle point (unstable), if λ and μ are of opposite

sign, and ðμð1 − λ + λαÞÞ/ðλð1 − μ + μαÞÞ < 0 for some α

In the following, we will consider system (13) and system
(15), respectively. For system (13), by Theorem 2, we get that

y = C1 ln xj j + C2ð Þx, ð18Þ

where C1 = 1/ðλð1 − λ + λαÞÞ and C2 = ðc2/c1Þ − ðln jc1j/ðλ
ð1 − λ + λαÞÞÞ. By (18), we know that

lim
x⟶0

y = 0 and lim
x⟶0

y′x =∞: ð19Þ
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Therefore, when the trajectory approaches the origin,
the limit position of its tangent is the y-axis. By Theorem
2, if λ < 0, then λα/ð1 − λ + λαÞ < 0. Thus, as t⟶ +∞,
all trajectories will tend to singular point (singular point
Oð0, 0Þ is called stable node). If λ > 0, however, there
are two cases occur as the different selection of α. If λα
/ð1 − λ + λαÞ < 0, then the result is the same as λ < 0. If
λα/ð1 − λ + λαÞ > 0, then all trajectories will be far away
from the singular point as t⟶ +∞ (singular point Oð
0, 0Þ is called unstable node). The phase portraits of this
case can be found in Example 5.

For system (15), by Theorem 3, we get that

ρ = Ce−η1θ/γ1 , ð20Þ

where C = c1e
c2ðη1/γ1Þ, η1 = ðηα − ðα − α2Þðη2 + γ2ÞÞ/ð

ð1 − ηð1 − αÞÞ2 + γ2ð1 − αÞ2Þ and γ1 = γα/ðð1 − ηð1 − αÞÞ2 +
γ2ð1 − αÞ2Þ. Since γ > 0, we have γ1 = γα/ðð1 − ηð1 − αÞÞ2 +
γ2ð1 − αÞ2Þ > 0. If η1 = 0, by Theorem 3 or (20), we have

x2 + y2 = c21 or ρ = c1: ð21Þ

Thus, the trajectories are closed curves, and the phase
portrait of system (15) can been found in Example 6 with
η = γ = 2 and α = 3/4 (see Figure 1(a)). In this case, the sin-
gular point Oð0, 0Þ is stable but not asymptotically stable
and is called a center.

If η1 < 0, then the effect of the factor eη1t in Theorem 3 is
to change the simple closed curves into the spirals. In this

O

y

x

(a) η = γ = 2 with α = 3/4

O

y

x

(b) η = −2 and γ = 2

O

y

x

(c) η = γ = 2 with α = 1/4

O

y

x

(d) η = γ = 2 with α = 4/5

Figure 1: The phase portraits of system (15) at different α.

x

y

(a) λ = μ = −1 or λ = μ = 2 with α = 1/4

x

y

(b) λ = μ = 2 with α = 3/4

Figure 2: The phase portraits of system (8) for λ = μ at different α.
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case, the singular point Oð0, 0Þ is asymptotically stable and is
called a stable focus. Since η1 = ðηα − ðα − α2Þðη2 + γ2ÞÞ/ð
ð1 − ηð1 − αÞÞ2 + γ2ð1 − αÞ2Þ, we know that if η < 0, then η1
< 0; this case can be found in Example 6 with η = −2 and
γ = 2 (see Figure 1(b) ). However, if η ≥ 0, we also can get
η1 < 0 for some values of α, such as η = γ = 2 and α = 1/4,
which will be shown in Example 6 (see Figure 1(c)).

If η1 > 0, then all trajectories of system (15) spiral away
from the origin Oð0, 0Þ as t⟶ +∞ and are illustrated in
figure of Example 6. This case only happens when η ≥ 0 for
some values of α, such as η = γ = 2 and α = 4/5, which will
be shown in Example 6 (see Figure 1(d)). In this case, the
singular point Oð0, 0Þ is unstable and is named an unstable
focus.

We summarize the above analysis in the following theo-
rem for A =MðλÞ and A =Rðη, γÞ.

Theorem 5. For the fractional-order autonomous linear sys-
tem (1), let MðλÞ (or Rðη, γÞ) be the normal form of matrix

A. Then, the behavior of its trajectories near the singular
point Oð0, 0Þ is as follows.

(i-1) If λ < 0, then λα/ð1 − λ + λαÞ < 0 and Oð0, 0Þ is sta-
ble node

(i-2) If λ > 0 and λα/ð1 − λ + λαÞ < 0 for some α, then O
ð0, 0Þ is stable node

(i-3) If λ > 0 and λα/ð1 − λ + λαÞ > 0 for some α, then O
ð0, 0Þ is unstable node

(ii-1) For η ≥ 0, if η1 = 0 at some α, then Oð0, 0Þ is stable
center

(ii-2) If η < 0, then η1 < 0 and Oð0, 0Þ is stable focus
(ii-3) For η ≥ 0, if η1 > 0 at some α, then Oð0, 0Þ is stable

focus
(ii-4) For η ≥ 0, if η1 < 0 at some α, then Oð0, 0Þ is unsta-

ble focus

4. The Illustrative Examples

In fact, for the classical autonomous systems (9), (14), and
(16), the phase portraits can be found in [8, 10]. If the arrow

x

y

(a) λ = −1 and μ = −2 for 0 < α < 1

x

y

(b) λ = 4 and μ = 3/2 with α = 1/5

x

y

(c) λ = 2 and μ = 1 with α = 7/8

x

y

(d) λ = 10 and μ = 1/2 with α = 1/8

Figure 3: The phase portraits of system (8) for λ ≠ μ and λμ > 0 at different α.

x

y

(a) λ = 2 and μ = −1 with α = 1/8

x

y

(b) λ = 1 and μ = −1 with α = 7/8

Figure 4: The phase portraits of system (8) for λ > 0 > μ at different α.
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is pointing to the singular point, then the singular point Oð
0, 0Þ is a stable point; otherwise, it is an unstable point. Next,
we make a detailed analysis of A =Lðλ, μÞ; the results will
be shown in Examples 1-4. For A =MðλÞ and A =Rðη, γÞ,
we can get similar results as in Example 5 and Example 6,
respectively.

For A =Lðλ, μÞ, there are three cases as analyzed in Sec-
tion 3. For case λ = μ, comparing our results with those in [8,
10], we can find that the results of system (8) and system (9)
are consistent for the case λ = μ < 0. However, the results of
the case λ = μ > 0 are inconsistent. For λ = μ > 0 of classical
autonomous system (9), the results can be found as the same
one in Example 1 Figure 2(b). For λ = μ > 0 of system (8), if
λα/ð1 − λ + λαÞ = μα/ð1 − μ + μαÞ < 0, then the result is the
same as λ < 0 in Example 1 Figure 2(a), and if λα/ð1 − λ +
λαÞ = μα/ð1 − μ + μαÞ > 0, then the result can be found in
Example 1 Figure 2(b).

For case λ ≠ μ and λμ > 0, the results of system (8) and
system (9) are inconsistent. Precisely speaking, for case λμ
> 0, the trajectories of classical autonomous system (9) are
a family of parabolas; they all can be found in [8, 10]. How-
ever, for case λμ > 0, the trajectories of system (8) may be a
family of parabolas or hyperbolas as the different selection of
α. As the results in Examples 2, if ðμð1 − λ + λαÞÞ/ðλð1 − μ
+ μαÞÞ > 0 for some α, then the results are shown in
Figures 3(a)–3(c); the trajectories of system (8) are a family
of parabolas. If ðμð1 − λ + λαÞÞ/ðλð1 − μ + μαÞÞ < 0 for some
α, then the result is shown in Figure 3(d); the trajectories of
system (8) are a family of hyperbolas.

Similarly, for case λμ < 0, the results of system (8) and
system (9) are also inconsistent. Precisely speaking, for case
λμ < 0, the trajectories of classical autonomous system (9)
are a family of hyperbolas; they all can be found in [8, 10].
However, for case λμ < 0, the trajectories of system (8)
may be a family of parabolas or hyperbolas as the different
selection of α; the results can be found in Examples 3 and
4. If ðμð1 − λ + λαÞÞ/ðλð1 − μ + μαÞÞ > 0 for some α, then
the results are shown in Figures 4(a) and 5(a); the trajecto-
ries of system (8) are a family of parabolas. If ðμð1 − λ + λ
αÞÞ/ðλð1 − μ + μαÞÞ < 0 for some α, then the results are
shown in Figures 4(b) and 5(b); the trajectories of system
(8) are a family of hyperbolas.

Example 1. In this example, we consider the case for λ = μ
≠ 0. For λ = μ = −1 or λ = μ = 2 with α = 1/4, the results
can be found in Figure 2(a), which verify (i-1) and (i-2) in
Theorem 4. The results of λ = μ = 2 with α = 3/4 can be
found in Figure 2(b), which verify (i-3) in Theorem 4. From
Figure 2, it can be seen that our results of Case 1 are consis-
tent with the analysis in Section 3.

Example 2. The second example is for Case 2 in Section 3.
For Subcase 1 of Case 2, if λ = −1 and μ = −2, then the results
can be found in Figure 3(a), which verify (ii-1) in Theorem
4. If λ = 4 and μ = 3/2 with α = 1/5, then Figure 3(b) is for
Subcase 2 (i) of Case 2, which verify (ii-2) in Theorem 4. If
λ = 2 and μ = 1 with α = 7/8, then Figure 3(c) is for Subcase
2 (ii) of Case 2, which verify (ii-3) in Theorem 4. If λ = 10

x

y

(a) λ = −1 and μ = 2 with α = 1/4

x

y

(b) λ = −1 and μ = 2 with α = 3/4

Figure 5: The phase portraits of system (8) for λ < 0 < μ at different α.

O

<

x

y

(a) λ = −1

O x

y

(b) λ = 2 with α = 1/4

O

y

x

(c) λ = 2 with α = 3/4

Figure 6: The phase portraits of system (13) at different α.
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and μ = 1/2 with α = 1/8, then Figure 3(d) is for Subcase 2
(iii) of Case 2, which verify (ii-4) in Theorem 4. From
Figure 3, it can be seen that our results of Case 2 are consis-
tent with the analysis in Section 3.

Example 3. The third example is for Subcase 1 of Case 3 in
Section 3. If λ = −2 and μ = −1 with α = 1/8, then
Figure 4(a) is for Subcase 1 (i) of Case 3, which verify (iii-
1) in Theorem 4. If λ = 1 and μ = −1 with α = 7/8, then
Figure 4(b) is for Subcase 1 (ii) of Case 3, which verify (iii-
2) in Theorem 4. From Figure 4, it can be seen that our
results of Subcase 1 of Case 3 are consistent with the analysis
in Section 3.

Example 4. The fourth example is for Subcase 2 of Case 3 in
Section 3. If λ = −1 and μ = 2 with α = 1/4, then Figure 5(a)
is for Subcase 2 (i) of Case 3, which verify (iii-1) in Theorem
4. If λ = −1 and μ = 2 with α = 3/4, then Figure 5(b) is for
Subcase 2 (ii) of Case 3, which verify (iii-2) in Theorem 4.
From Figure 5, it can be seen that our results of Subcase 2
of Case 3 are consistent with the analysis in Section 3.

Example 5. In this example, we consider the phase portraits
for system (13). For λ = −1, the result can be found in
Figure 6(a), which verify (i-1) in Theorem 5. For λ = 2 with
α = 1/4, the result can be found in Figure 6(b), which verify
(i-2) in Theorem 5. The result of λ = 2 with α = 3/4 can be
found in Figure 6(c), which verify (i-3) in Theorem 5. From
Figure 6, it can be found that our results are consistent with
the analysis in Section 3.

Example 6. This example is for system (15). If η = γ = 2 with
α = 3/4, then the results can be found in Figure 1(a), which
verify (ii-1) in Theorem 5. If η = −2 and γ = 2, then the
results can be found in Figure 1(b), which verify (ii-2) in
Theorem 5. If η = γ = 2 with α = 1/4, then the results can
be found in Figure 1(c), which verify (ii-3) in Theorem 5.
If η = γ = 2 with α = 4/5, then the results can be found in
Figure 1(d), which verify (ii-4) in Theorem 5. From
Figure 1, it can be seen that our results are consistent with
the analysis in Section 3.

5. Conclusion

In this paper, we study the trajectories and singular points
for two-dimensional fractional-order planar autonomous
linear systems involving the Caputo-Fabrizio fractional
derivative. This problem is a natural generalization of the
classical autonomous systems. Compared with the classical
integer-order autonomous systems, trajectories of the solu-
tions for fractional-order autonomous systems have more
abundant physical phenomena. The results of our paper will
further enrich the related contents of fractional-order auton-
omous systems. In the future, fractional-order complex
autonomous systems and fractional-order autonomous non-
linear systems can also be studied.
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