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1 Introduction

In [1, 2], for Kummer’s and hypergeometric differential equations, complementary solutions expressed
by the confluent hypergeometric series and the hypergeometric series, respectively, are obtained,
by using the AC-Laplace transform, that is the Laplace transform supplemented by its analytic
continuation, distribution theory and the fractional calculus.

In [3], the formulas are presented which give the particular solutions of those equations with
inhomogeneous term in terms of the Green’s function. The differential equation satisfied by the
Green’s function is expressed with the aid of Dirac’s delta function, which is defined in distribution
theory, and hence the presentation in distribution theory is adopted in [3]. In the present paper, a
presentation using the AC-Laplace transform is provided. In Section 1.1, definition and preliminary
formulas of the AC-Laplace transform are presented.

Let

pK(t, s) := t · s2 + (c− bt)s− ab, (1)

where a ∈ C, b ∈ C and c ∈ C. Then Kummer’s differential equation with an inhomogeneous term
is given by

pK(t,
d

dt
)u(t) := t · d

2

dt2
u(t) + (c− bt) · d

dt
u(t)− ab · u(t) = f(t), t > 0. (2)

If c /∈ Z, the basic complementary solutions of (2) are given by

K1(t) := 1F1(a; c; bt), (3)

K2(t) := t
1−c · 1F1(a− c+ 1; 2− c; bt). (4)

Here 1F1(a; c; z) =
∑∞
k=0

(a)k
k!(c)k

zk is the confluent hypergeometric series, (a)k =
∏k−1
l=0 (a + l) for

k ∈ Z>0, and (a)0 = 1.

Notations R, C and Z are used to represent the sets of all real numbers, of all complex numbers
and of all integers, respectively. Notations R>r := {x ∈ R|x > r}, R≥r := {x ∈ R|x ≥ r}
for r ∈ R, +C := {z ∈ C|Re z > 0}, Z>a := {n ∈ Z|n > a}, Z<b := {n ∈ Z|n < b} and
Z[a,b] := {n ∈ Z|a ≤ n ≤ b} for a ∈ Z and b ∈ Z satisfying a < b are also used. Heaviside’s step
function H(t) is defined by

H(t) =

{
1, t > 0,
0, t ≤ 0,

(5)

and when f(t) is defined on R>τ , f(t)H(t− τ) is equal to f(t) for t > τ and to 0 for t ≤ τ . L1
loc(R)

is used to denote the class of functions which are locally integrable on R.

When c ∈ C satisfies Re (1− c) > −1, the solution K2(t) has the Laplace transform:

K̂2(s) = L[K2(t)] :=

∫ ∞

0

K2(t)e
−stdt, (6)

and is obtained by solving the Laplace transform of equation (2). In [1, 2], it is confirmed that the
solution K2(t) is obtained by using the AC-Laplace transform for all nonzero values of c ∈ C\Z>0.

The complementary solution of the hypergeometric differential equation, corresponding to K2(t),
is found to be obtained in the form of a series of powers of s−1 multipied by a power of s, which
has zero range of convergence. In fact, the series is the asymptotic expansion of Kummer’s function
U(a, b, z); see Section 13.5 in [4], and is discussed also in [5]. Even in that case, by the term-by-term
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inverse transform, we obtain the desired result. The calculation was justified by distribution theory
[2].

In [3], particular solutions of Kummer’s and the hypergeometric differential equation are presented
in terms of the Green’s function with the aid of distribution theory. In the present paper, they are
presented by using the AC-Laplace transform.

In Section 2, we give formulas of fractional calculus and the AC-Laplace transform and the norm
associated to the AC-Laplace transform. We use them in giving the particular solution of differential
equation with polynomial coefficients in terms of the Green’s function in Section 3, and the solutions
are obtained by this method for Kummer’s and the hypergeometric differential equation in Sections 4
and 5, respectively, and for a fractional differential equation with coefficients of polynomial of at
most first degree, in Section 6.

In [6, 7], stimulated by Yosida’s works [8, 9] on Laplace’s differential equations, of which typical
one is Kummer’s equation, the solution of Kummer’s equation and a simple fractional differential
equation was studied on the basis of fractional calculus and distribution theory. In [1], it was
discussed in terms of the AC-Laplace transform. In [2], the arguments in [1] were applied to
the solution of the homogeneous hypergeometric equation. In [3], the solution of inhomogeneous
equations was discussed in terms of the Green’s function and distribution theory. We now study it
in terms of the Green’s function and the AC-Laplace transform.

In [10, 11], the solution of inhomogeneous differential equation with constant coefficients is discussed
in terms of the Green’s function and distribution theory. In [3], it was discussed in terms of the
Green’s function and the AC-Laplace transform, where we obtain the solution which is not obtained
with the aid of the usual Laplace transform.

In many sections, the same problems are taken up in [3] and the present paper, by using distribution
theory and the AC-Laplace transform, respectively. In the corresponding situations, the same
descriptions are adopted, e,g, in the paragraph including Equations (1)∼(4), the first two paragraphs
in Section 5 in the present paper, and so on.

1.1 Preliminary formulas of the AC-Laplace transform

Definition 1.1. Let f(a, t) be such a function of t ∈ R>0 and a ∈ D0 ⊂ C, that
1. f(a, t) is analytic as a function of a in the domain D0 for fixed t ∈ R>0,

2. the Laplace transform f̂(a, s) defined by

f̂(a, s) := L[f(a, t)] =
∫ ∞

0

f(a, t)e−stdt, (7)

exists if a ∈ D1 ⊂ D0 and is analytic as a function of a in the domain D1,

3. f̂(a, s) defined by (7) is analytic as a function of a in the domain D0.

Then we call the analytic continuation as a function of a of f̂(a, s) to the domainD0, the AC-Laplace
transform of f(a, t) and denote it by f̂(a, s) = L̃[f(a, t)] for a ∈ D0.

In solving a differential equation, the solution u(t) for t > 0 is often assumed to be expressed as a
linear combination of

gν(t) :=
1

Γ(ν)
tν−1, ν ∈ C\Z<1, (8)

where Γ(ν) is the gamma function. The Laplace transform of gν(t) is given by L[gν(t)] = s−ν if
ν ∈ +C. We introduce the AC-Laplace transform of gν(t), which is expressed by L̃[gν(t)], as in
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[1, 2], such that

ĝν(s) = L̃[gν(t)] = s−ν , ν ∈ C\Z<1. (9)

The derivative of gν(t) of order l ∈ Z>0 is calculated by

dl

dtl
gν(t) =

{
gν−l(t), ν − l ∈ C\Z<1,
0, ν − l ∈ Z<1.

(10)

The AC-Laplace transform of dl

dtl
gν(t) is given by

L̃[ d
l

dtl
gν(t)] = sl−ν − ⟨sl−ν⟩0, (11)

where

⟨sl−ν⟩0 =

{
sk, k = l − ν ∈ Z>−1,
0, l − ν /∈ Z>−1.

(12)

We note here the formulas:

t · gν(t)= t ·
tν−1

Γ(ν)
= ν · tν

Γ(ν + 1)
= νgν+1(t), (13)

− d

ds
s−ν = νs−ν−1 = νL̃[gν+1(t)]. (14)

By using these, we confirm that

L̃[tmgν(t)] = (−1)m
dm

dsm
s−ν . (15)

Condition 1.1. u(t) is expressed by a linear combination of gν(t) for ν ∈ S, where S is an
enumerable set of ν ∈ C\Z<1 satisfying Re ν > −M for some M ∈ Z>−1.

Remark 1.1. The complementary solutions of a differential equation with polynomial coefficients
usually satisfy this condition.

When u(t) satisfies Condition 1.1, it is expressed as follows:

u(t) =
∑
ν∈S

uν−1gν(t) =
∑
ν∈S

uν−1
1

Γ(ν)
tν−1, (16)

where uν−1 ∈ C are constants. When û(s) = L̃[u(t)] exists, it is expressed by

û(s) =
∑
ν∈S

uν−1ĝν(s) =
∑
ν∈S

uν−1s
−ν . (17)

By applying formulas (15) and (11), we obtain

Lemma 1.1. Let m ∈ Z>0, l ∈ Z>0, u(t) be expressed by (16) and û(s) := L̃[u(t)]. Then

L̃[tmu(t)]= (−1)m
dm

dsm
û(s), (18)

L̃[ d
l

dtl
u(t)]= slû(s)− ⟨slû(s)⟩0, (19)

L̃[tm dl

dtl
u(t)]= (−1)m

dm

dsm
[slû(s)]− (−1)m

dm

dsm
⟨slû(s)⟩0, (20)
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where

⟨slû(s)⟩0 =

l−1∑
k=0

ul−k−1s
k. (21)

In particular,

⟨sû(s)⟩0 = u0, ⟨s2û(s)⟩0 = u0s+ u1, ⟨s3û(s)⟩0 = u0s
2 + u1s+ u2. (22)

Remark 1.2. Even when the series on the righthand side of (17) does not converge for any s, the
series on the righthand side of (16) may converge in an interval of t on R. In such a case, we use
û(s) = LS [u(t)] to represent the series on the righthand side of (17). Then the operations on û(s)
are supposed to be done term-by-term [2].

2 Fractional Derivative and the AC-Laplace Transform

We consider the Riemann-Liouville fractional integral and derivatives cD
µ
Rf(z) of order µ ∈ C, when

we may usually discuss the derivative dn

dzn
f(z) = f (n)(z) of order n ∈ Z>0: see [12] and Section 2.3.2

in [13]. In the following definition, P (c, z) is the path from c ∈ C to z ∈ C, and L1(P (c, z)) is the
class of functions which are integrable on P (c, z), and ⌊x⌋ for x ∈ R denotes the greatest integer
not exceeding x.

Definition 2.1. Let c ∈ C, z ∈ C, f(ζ) ∈ L1(P (c, z)), and f(ζ) be continuous in a neighborhood
of ζ = z. Then the Riemann-Liouville fractional integral of order λ ∈ +C is defined by

cD
−λ
R f(z) ::=

1

Γ(λ)

∫ z

c

(z − ζ)λ−1f(ζ) dζ, (23)

and the Riemann-Liouville fractional derivative of order µ ∈ C satisfying Re µ ≥ 0 is defined by

cD
µ
Rf(z) := cD

l
R[cD

µ−l
R f(z)], (24)

when the righthand side exists, where l = ⌊Re µ⌋+1, and cD
l
Rf(z) =

dl

dzl
f(z) = f (l)(z) for l ∈ Z>−1.

In the following study, the value c = 0 is chosen.

In place of (10), (11), (19) and (20), the following lemmas hold valid [1, 2].

Lemma 2.1. Let ν ∈ C\Z<1 and µ ∈ C. Then for t ∈ R>0, we have

0D
µ
Rgν(t) =

{
gν−µ(t), ν − µ ∈ C\Z<1,
0, ν − µ ∈ Z<1.

(25)

Lemma 2.2. Let gν(t) and ĝν(s) be given by (8) and (9). Then for µ ∈ C, we have

L̃[0Dµ
Rgν(t)]= s

µ−ν − ⟨sµĝν(s)⟩0, (26)

where

⟨sµĝν(s)⟩0 =

{
sk, k = µ− ν ∈ Z>−1,
0, µ− ν /∈ Z>−1.

(27)
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Lemma 2.3. Let m ∈ Z>0, µ ∈ C, u(t) be expressed by (16), and û(s) := L̃[u(t)]. Then

sµû(s)= L̃[0Dµ
Ru(t)] + ⟨sµû(s)⟩0, (28)

(−1)m
dm

dsm
[sµû(s)]= L̃[tm0D

µ
Ru(t)] + (−1)m

dm

dsm
⟨sµû(s)⟩0, (29)

where

⟨sµû(s)⟩0 =

∞∑
k=0, µ−k∈S

uµ−k−1s
k. (30)

Definition 2.2. Let τ ∈ R and ψ(t)H(t− τ) ∈ L1
loc(R). Then Lτ [ψ(t)] is defined by

Lτ [ψ(t)] :=
∫ ∞

0

ψ(τ + x)e−sxdx =

∫ ∞

τ

ψ(t)e−s(t−τ)dt. (31)

Lemma 2.4. Let τ ∈ R, l ∈ Z>0, m ∈ Z>0,
dl

dtl
ψ(t) ·H(t − τ) ∈ L1

loc(R), and ψ̂τ (s) := Lτ [ψ(t)].
Then

Lτ [tmψ(t)]= (τ − d

ds
)mψ̂τ (s), (32)

slψ̂τ (s)=Lτ [
dl

dtl
ψ(t)] + ⟨slψ̂τ (s)⟩0, (33)

(τ − d

ds
)m[slψ̂τ (s)]=Lτ [tm

dl

dtl
ψ(t)] + (τ − d

ds
)m⟨slψ̂τ (s)⟩0, (34)

where

⟨slψ̂τ (s)⟩0 =

l−1∑
k=0

ψ(k)(τ)sl−k−1. (35)

When l = 1, 2 and 3, we have

⟨sψ̂τ (s)⟩0 = ψ(τ), ⟨s2ψ̂τ (s)⟩0 = ψ(τ)s+ ψ′(τ), ⟨s3ψ̂τ (s)⟩0 = ψ(τ)s2 + ψ′(τ)s+ ψ′′(τ). (36)

Proof. Equation (32) is confirmed by

Lτ [tmψ(t)] =
∫ ∞

τ

tmψ(t)e−s(t−τ)dt = (τ − d

ds
)mψ̂τ (s). (37)

By integration by parts, we obtain

Lτ [
dl

dtl
ψ(t)] =

∫ ∞

τ

e−s(t−τ)
dl

dtl
ψ(t)dt = −ψ(l−1)(τ) + s · Lτ [

dl−1

dtl−1
ψ(t)], (38)

which is used to prove (33). Equation (34) is obtained, by replacing ψ(t) and ψ̂τ (s) by
dl

dtl
ψ(t) and

L̃[ d
l

dtl
ψ(t)], respectively, in (32), with the aid of (33). �

Lemma 2.5. Let the condition in Lemma 2.4 be satisfied, and ψτ (t) = ψ(t)H(t−τ). Then in place
of Lτ [ψτ (t)] = ψ̂(s) and (32), we have

L[ψτ (t)]=Lτ [ψτ (t)]e−τs = ψ̂τ (s)e
−τs, (39)

L[tmψτ (t)]= (−1)m
dm

dsm
L[ψτ (t)] = (−1)m

dm

dsm
[ψ̂τ (s)e

−τs], (40)

L[tmψτ (t)]=Lτ [tmψτ (t)] · e−τs = (τ − d

ds
)mψ̂τ (s) · e−τs. (41)
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We also have

(−1)m
dm

dsm
[slψ̂τ (s)e

−τs]= (τ − d

ds
)m[slψ̂τ (s)] · e−τs. (42)

Proof. Equation (41) is obtained with the aid of (39) and (32). Equation (42) is obtained by using

− d

ds
[slψ̂τ (s)e

−τs] = (τ − d

ds
)[slψ̂τ (s)] · e−τs, (43)

repeatedly. �

3 Green’s Function for Inhomogeneous Differential
Equations with Polynomial Coefficients

Let

pn(t, s) :=

n∑
l=0

al(t)s
l =

n∑
l=0

2∑
m=0

al,mt
msl, (44)

where n ∈ Z>0, al,m ∈ C are contants, and al(t) =
∑2
m=0 al,mt

m are polynomials of t satisfying
a0(t) ̸= 0 and an(t) ̸= 0. Discussions are made of the differential equation with an inhomogeneous
term which is given by

pn(t,
d

dt
)u(t) :=

n∑
l=0

al(t)
dl

dtl
u(t) =

n∑
l=0

2∑
m=0

al,mt
m dl

dtl
u(t) = f(t), t > 0. (45)

Remark 3.1. In Section 4, we consider Kummer’s differential equation given by (2), that is
Equation (45) in which

n = 2, a2(t) = t, a1(t) = c− bt, a0(t) = −ab. (46)

In Section 5, we consider the hypergeometric differential equation, that is Equation (45) in which

n = 2, a2(t) = t(1− t), a1(t) = c− (a+ b+ 1)t, a0(t) = −ab. (47)

These are special ones of

n = 2, a2(t) = t+ a2,2t
2, a1(t) = c+ a1,1t, a0(t) = a0,0. (48)

For the inhomogeneous term f(t), we consider the following three cases.

Condition 3.1. (i) f(t)H(t) ∈ L1
loc(R),

(ii) f(t) = 0D
β
Rfβ(t), where fβ(t)H(t) ∈ L1

loc(R), and f̂(s) = sβ f̂β(s),

(iii) f(t) = g−β(t) =
1

Γ(−β) t
−β−1, f̂(s) = ĝ−β(s) = sβ and β ∈ C\Z>−1.

Lemma 3.1. Let u(t) be expressed by (16) and be a solution of (45), Then the differential equation
satisfied by û(s) := L̃[u(t)] is

pn(−
d

ds
, s)û(s) :=

n∑
l=0

al(−
d

ds
)[slû(s)] = L̃[pn(t,

d

dt
)u(t)] +

n∑
l=1

al(−
d

ds
)⟨slû(s)⟩0

= f̂(s) +

n∑
l=1

al(−
d

ds
)⟨slû(s)⟩0, (49)
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where f̂(s) = L̃[f(t)], and ⟨slû(s)⟩0 are given by (21) and (22). When (48) applies, the second term
in the righthand side of Equation (49) is expressed by

2∑
l=1

al(−
d

ds
)⟨slû(s)⟩0 =(c− 1)u0. (50)

Proof. Equation (49) is obtained by using (20). Equation (50) is confirmed by using (48) and (22)
in the lefthand side of (50). �

Lemma 3.2. Let τ ∈ R, Equation (45) be satisfied by u(t) = ψ(t) for t > τ , dn

dtn
ψ(t) ·H(t − τ) ∈

L1
loc(R), and ψ̂τ (s) := Lτ [ψ(t)]. Then

pn(τ − d

ds
, s)ψ̂τ (s) :=

n∑
l=0

al(τ − d

ds
)[slψ̂τ (s)] = Lτ [pn(t,

d

dt
)ψ(t)] +

n∑
l=1

al(τ − d

ds
)⟨slψ̂τ (s)⟩0,

(51)

where ⟨slψ̂τ (s)⟩0 is given by (35) and (36). When (48) applies, the second term in the righthand
side of Equation (51) is expressed by

2∑
l=1

al(τ − d

ds
)⟨slψ̂τ (s)⟩0 =(τ + a2,2τ

2)ψ′(τ) + (τs− 1− 2a2,2τ + c+ a1,1τ)ψ(τ). (52)

Proof. Equation (51) is obtained with the aid of (34). Equation (52) is confirmed, by using (48)
and (36) in the lefthand side of (52). �

Let Condition 3.1(i) be satisfied. Then f̂(s) = L[f(t)].

Definition 3.1. For Equation (45), the Green’s function G(t, τ) for fixed τ ∈ R≥0 is such that
Ĝ(s, τ) := Lτ [G(t, τ)] satisfies

pn(τ − d

ds
, s)Ĝ(s, τ) =

n∑
l=0

al(τ − d

ds
)[slĜ(s, τ)] = 1. (53)

Lemma 3.3. The Green’s function G(t, τ) for Equation (45) satisfies

pn(t,
d

dt
)G(t, τ) =

n∑
l=0

al(t)
dl

dtl
G(t, τ) = 0, t > τ, (54)

and G(t, τ) = 0 for t < τ . The values of G(t, τ) and its derivatives at t = τ are determined by

n∑
l=1

al(τ − d

ds
)⟨slĜ(s, τ)⟩0 = 1, (55)

where ⟨slĜ(s, τ)⟩0 is given by (35) and (36) with ψ̂τ (s) and ψ(τ) replaced by Ĝ(s, τ) and G(τ, τ),
respectively.

Proof. This is confirmed by comparing (53) with (51), where ψ(t) and ψ̂τ (s) are replaced by
G(t, τ) and Ĝ(s, τ), respectively. �

Lemma 3.4. Let (48) apply, u(t) satisfy p2(t,
d
dt
)u(t) = 0 for t > 0, and u(0) = u0. Then the

Green’s function G(t, 0) for Equation (45) is given by

G(t, 0) =
1

(c− 1)u0
u(t)H(t). (56)
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Proof. In this case, (50) shows that the righthand side of Equation (49) is equal to (c− 1)u0. By
comparing this with (55) for τ = 0, we conclude the proof. �

Lemma 3.5. Let (48) apply, τ > 0, ψ(t) satisfy p2(t,
d
dt
)ψ(t) = 0 for t > τ , and ψ(τ) = 0. Then

the Green’s function G(t, τ) for Equation (45) is given by

G(t, τ) =
1

a2(τ)ψ′(τ)
ψ(t)H(t− τ). (57)

Proof. In this case, (52) shows that the righthand side of Equation (51) is equal to (τ +
a2,2τ

2)ψ′(τ) = a2(τ)ψ
′(τ). By comparing this with (55), we conclude the proof. �

Lemma 3.6. Let Ĝ(s, τ) = Lτ [G(t, τ)] as in Definition 3.1. Then

L[G(t, τ)] = Ĝ(s, τ)eτs. (58)

Proof. This is due to formula (39). �

Lemma 3.7. The following equation is equivalent to (53) in Definition 3.1:

pn(−
d

ds
, s)[Ĝ(s, τ)e−τs] =

n∑
l=0

al(−
d

ds
)[slĜ(s, τ)e−τs] = e−τs. (59)

Proof. This is confirmed by using formula (42). �

Lemma 3.8. Let G(t, τ) be defined by Definition 3.1 for Equation (45), Condition 3.1(i) be satisfied,
and uf (t) be given by

uf (t) :=

∫ t

0

G(t, τ)f(τ)dτ. (60)

Then

ûf (s) := L[uf (t)] =
∫ ∞

0

Ĝ(s, τ)f(τ)e−sτdτ, (61)

is a particular solution of (49) for the term f̂(s), and

L[pn(t,
d

dt
)uf (t)] = f̂(s). (62)

Proof. Equation (61) is due to Lemma 3.6. We confirm the rest of the statements by using formula
(59) in (49) for û(s) = ûf (s). �

This lemma implies.

Corollary 3.1. uf (t) and ûf (s) given by (60) and (61) are particular solutions of (45) and (49)
for the terms f(t) and f̂(s), respectively.

Lemma 3.9. Let (48) apply, û(s) be a solution of (49) with (50), p̃2(t, s) be related with p2(t, s)
given by (44) for n = 2, by

p̃2(t, s) := s−βp2(t, s)s
β = s−β [(t+ a2,2t

2) · s2 + (c+ a1,1t) · s+ a0,0]s
β , (63)

9
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and f̂β(s) = s−β f̂(s), where t = − d
ds
. Then

p̃2(t, s) = (t+ a2,2t
2) · s2 + (c− β + (a1,1 − 2βa2,2)t) · s+ a2,2β(β + 1)− a1,1β + a0,0, (64)

and ŵ(s) = s−β û(s) satisfies

p̃2(−
d

ds
, s)ŵ(s)= f̂β(s) + u0(c− 1)s−β . (65)

Proof. (64) is obtained from (63) with the aid of the following lemma. �

Lemma 3.10. Let v̂(s) = L̃[v(t)]. Then

d

ds
[sβ · sv̂(s)]= sβ{βv̂(s) + d

ds
[sv̂(s)]}, (66)

d2

ds2
[sβ · s2v̂(s)]= sβ{β2v̂(s) + β

d

ds
[sv̂(s)] + βs−1 d

ds
[s2v̂(s)] +

d2

ds2
[s2v̂(s)]}

= sβ{β(β + 1)v̂(s) + 2β
d

ds
[sv̂(s)] +

d2

ds2
[s2v̂(s)]}. (67)

Corollary 3.1 shows that the particular solution of (65) for the term f̂β(s) = L̃[fβ(t)] is expressed
by a particular solution of

pβ(t,
d

dt
)w(t)= fβ(t), t > 0. (68)

4 Particular Solution of Kummer’s Differential Equation
in Terms of the Green’s Function

Kummer’s differential equation with an inhomogeneous term f(t) is given in (2). If f(t) = 0 and
c /∈ Z, the basic solutions K1(t) and K2(t) of (2) are given by (3) and (4).

We now obtain a particular solution of this equation by the method stated in Section 3.

4.1 Solution of Equation (2) in which Condition 3.1(i) is satisfied

The following lemma is a special one of Lemma 3.1 for the case where (46) applies.

Lemma 4.1. Let u(t) be expressed by (16) and be a solution of Equation (2). Then the differential
equation satisfied by û(s) = L̃[u(t)] is given by

pK(− d

ds
, s)û(s)=LH [pK(t,

d

dt
)u(t)] + u0(c− 1) = f̂(s) + u0(c− 1). (69)

The following lemma is a special one of Lemma 3.2 for the case where (46) applies.

Lemma 4.2. Let τ ≥ 0, pK(t, d
dt
)ψ(t) ·H(t− τ) ∈ L1

loc(R) and ψ̂τ (s) = Lτ [ψ(t)]. Then

pK(τ − d

ds
, s)ψ̂τ (s)=Lτ [pK(t,

d

dt
)ψ(t)] + τψ′(τ) + ψ(τ)(c− bτ − 1) + ψ(τ)τs. (70)

The following lemma is a special one of Lemmas 3.4 and 3.5 for the case where (46) applies.

10
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Lemma 4.3. Let K1(t) and K2(t) be given by (3) and (4), and ψK(t, τ) for fixed τ > 0 be given by

ψK(t, τ) := c1(τ) ·K1(t) + c2(τ) ·K2(t), (71)

where c1(τ) and c2(τ) are constants which depend on τ and are so chosen that ψK(τ, τ) = 0. Then
GK(t, 0) and GK(t, τ) for τ > 0, which are given by

GK(t, 0) :=
1

c− 1
·K1(t)H(t), GK(t, τ) :=

1

τψ′
K(τ, τ)

ψK(t, τ)H(t− τ), (72)

are the Green’s functions for Equation (2), so that ĜK(s, 0) = L[GK(t, 0)] and ĜK(s, τ) = Lτ [GK(t, τ)]
satisfy

pK(τ − d

ds
, s)ĜK(s, τ) = 1, (73)

for τ = 0 and τ > 0, respectively.

Proof. If we put u(t) = 1
c−1

· K1(t) in (69), then we have û(s) = ĜK(s, 0) on the lefthand side

of (69), and the righthand side of (69) is u(0)(c− 1) = 1, since pK(t, d
dt
)K1(t) = 0 and K1(0) = 1.

Thus (69) guarantees (73) for τ = 0. If we put ψ(t) = 1
τψ′

K
(τ,τ)

ψK(t, τ) and ψ(τ) = 0 in (70), then

we have ψ̂τ (s) = ĜK(s, τ) on the lefthand side of (70), and the righthand side of (70) is τ ·ψ′(τ) = 1.
Thus (70) guarantees (73) for τ > 0. �

Theorem 4.1. LetGK(t, τ) and ψK(t, τ) be those given in Lemma 4.3, Condition 3.1(i) be satisfied,
and uf (t) be given by

uf (t) :=

∫ t

0

GK(t, τ)f(τ)dτ =

∫ t

0

ψK(t, τ)
f(τ)

τψ′
K(τ, τ)

dτ. (74)

Then

ûf (s) =

∫ ∞

0

ĜK(s, τ)f(τ)e−sτdτ =

∫ ∞

0

ψ̂K(s, τ)
f(τ)

τψ′
K(τ, τ)

e−sτdτ. (75)

Now uf (t) and ûf (t) are particular solutions of (2) and (69) for the terms f(t) and f̂(s), respectively.

Proof. This is guaranteed by Corollary 3.1. �

Remark 4.1. By using the first equation in (73), we see that the particular solution of (69) for
the last term, is

û1(s) = u0(c− 1)ĜK(s, 0). (76)

The corresponding complementary solution of (2) is

u1(t) = u0(c− 1)GK(t, 0) = u0 ·K1(t). (77)

Considering that the basic complementary solutions of (2) are given by (3) and (4), the general
solution of (2) is now given by

u(t) = uf (t) + u0 ·K1(t) + u1−c ·K2(t). (78)

The condition ψK(τ, τ) = 0 requires that c1(τ) ·K1(τ) = −c2(τ) ·K2(τ), and hence we may choose
ψK(t, τ) as

ψK(t, τ) =

{
K1(t)− K1(τ)

K2(τ)
·K2(t), |K1(τ)| < |K2(τ)|,

K2(τ)
K1(τ)

·K1(t)−K2(t), |K1(τ)| ≥ |K2(τ)|.
(79)

Remark 4.2. In [6, 7, 1, 2], the Laplace transform of K2(t) was obtained by solving the first order
differential equation (69) for f̂(s) = 0 and u0 = 0. In [6, 7, 1], the Laplace transform of K1(t) was
obtained by solving the same equation for f̂(s) = 0 and u0 = 1.

11
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4.2 Solution of Equation (2) in which Condition 3.1(ii) is satisfied

We give the solution of equation (2) of which the inhomogeneous term f(t) satisfies Condition 3.1(ii),
so that f̂(s) = sβ f̂β(s), and fβ(t) satisfies fβ(t)H(t) ∈ L1

loc(R).

The following lemma is a special one of Lemma 3.9 for the case where (46) applies.

Lemma 4.4. Let û(s) be a solution of (69), and p̃K(− d
ds
, s) be related with pK(− d

ds
, s) given by

(1), by

p̃K(− d

ds
, s) := s−βpK(− d

ds
, s)sβ . (80)

Then

p̃K(t, s) := t · s2 + (c− β − bt)s− (a− β)b, (81)

and ŵ(s) = s−β û(s) satisfies

p̃K(− d

ds
, s)ŵ(s)= f̂β(s) + u0(c− 1)s−β . (82)

Theorem 4.1 shows that the particular solution of (82) for the term f̂β(s) is expressed by a particular
solution of

p̃K(t,
d

dt
)w(t)= fβ(t), t > 0. (83)

Remark 4.3. We note that p̃K(t, s) given by (81) is obtained from pK(t, s) given by (1), by
replacing a and c by a− β and c− β, respectively, and hence the complementary solutions Kβ,1(t)
and Kβ,2(t) and Green’s functions GK̃(t, 0) and GK̃(t, τ) of Equation (83) are obtained from those
K1(t), K2(t), GK(t, 0) and GK(t, τ), respectively, of Equation (2), by the same replacement.

Now in place of Theorem 4.1, we have the following theorem.

Theorem 4.2. LetGK̃(t, τ) and ψK̃(t, τ) be obtained fromGK(t, τ) and ψK(t, τ) by the replacement
stated in Remark 4.3, Condition 3.1(ii) be satisfied for β /∈ Z>0, and wg(t) be given by

wg(t) :=

∫ t

0

GK̃(t, τ)fβ(τ)dτ =

∫ t

0

ψK̃(t, τ)
fβ(τ)

τψ′
K̃
(τ, τ)

dτ. (84)

Then

ŵg(s) =

∫ ∞

0

ĜK̃(s, τ)fβ(τ)e
−sτdτ =

∫ ∞

0

ψ̂K̃(s, τ)
fβ(τ)

τψ′
K̃
(τ, τ)

e−sτdτ. (85)

Now uf (t) := 0D
β
Rwg(t) and ûf (s) = sβŵg(s) are particular solutions of (2) and (69) for the terms

f(t) and f̂(s), respectively.

Proof. Theorem 4.1 states that when wg(t) is given by (84), ŵg(s) = L[wg(t)] is the particular
solution of (82) for the term f̂β(s), and Lemma 4.4 states that ûf (s) = sβŵg(s) is the particular
solution of (69) for the term f̂(s). With the aid of Equation (19) in Lemma 2.3, we confirm that
if uf (t) is given by uf (t) = 0D

β
Rwg(t), then ûf (s) = L̃[uf (t)] is given by ûf (s) = sβŵg(s), when

β /∈ Z>0. �

12
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4.3 Solution of Equation (2) in which Condition 3.1(iii) is satisfied

We give the solution of Equation (2) of which the inhomogeneous term f(t) satisfies Condition 3.1(iii),
so that f(t) = gν(t) =

1
Γ(ν)

tν−1 and f̂(s) = ĝν(s) = s−ν . Here we use β /∈ Z>−1 in place of −ν.

Lemma 4.5. Let f̂(s) = sβ, p̃K(t, s) be given by (81), and ĜK̃(s, 0) satisfy

p̃K(t, s)ĜK̃(s, 0) = 1. (86)

Then the particular solution of (69) for the term f̂(s) = sβ is given by

ûf (s) = sβĜK̃(s, 0). (87)

Proof. ûf (s) satisfies pK(t, s)ûf (s) = sβ and hence p̃K(t, s)s−β ûf (s) = 1 by (80). Comparing this
with (86), we see that (87) is satisfied. �

By Remark 4.3, with the aid of GK(t, 0) given by (72) and (3), we have

Lemma 4.6. As the solution of (86), we obtain

ĜK̃(s, 0) = L[GK̃(t, 0)], GK̃(t, 0) =
1

c− β − 1
· 1F1(a− β; c− β; bt). (88)

Theorem 4.3. Let Condition 3.1(iii) be satisfied, and GK̃(t, 0) be given by (88). Then the
particular solution of (2) is given by

uf (t) := 0D
β
RGK̃(t, 0) =

t−β

(c− β − 1)Γ(1− β)
· 2F2(1, a− β; 1− β, c− β; bt), (89)

where 2F2(a1, a2; c1, c2; z) =
∑∞
k=0

(a1)k(a2)k
k!(c1)k(c2)k

zk.

Proof. We confirm that when uf (t) is given by (89), ûf (s) = L̃[uf (t)] is given by (87) and (88),
with the aid of Equation (19) in Lemma 2.3. �

5 Particular Solution of the Hypergeometric Differential
Equation in Terms of the Green’s Function

Let

pH(t, s) := t(1− t) · s2 + (c− (a+ b+ 1)t) · s− ab, (90)

where a ∈ C, b ∈ C and c ∈ C are constants. Then the hypergeometric differential equation with
an inhomogeneous term f(t) is given by

pH(t,
d

dt
)u(t) := t(1− t) · d

2

dt2
u(t) + (c− (a+ b+ 1)t) · d

dt
u(t)− ab · u(t) = f(t), t > 0. (91)

If f(t) = 0 and c /∈ Z, the basic solutions of (91) in [4] and [14] are given by

H1(t) := 2F1(a, b; c; t), (92)

H2(t) := t
1−c · 2F1(1 + a− c, 1 + b− c; 2− c; t), (93)

where 2F1(a, b; c; z) =
∑∞
k=0

(a)k(b)k
k!(c)k

zk of z ∈ C is the hypergeometric series.

We now obtain a particular solution of this equation by the method stated in Section 3 and used
in Section 4.1.

13



Morita and Sato; JAMCS, 28(4): 1-22, 2018; Article no.JAMCS.43059

5.1 Solution of Equation (91) in which Condition 3.1(i) is satisfied

The following lemma is a special one of Lemma 3.1 for the case where (47) applies.

Lemma 5.1. Let u(t) be expressed by (16) and be a solution of Equation (91). Then the differential
equation satisfied by û(s) = LS [u(t)] is given by

pH(− d

ds
, s)û(s)=LH [pH(t,

d

dt
)u(t)] + u0(c− 1) = f̂(s) + u0(c− 1). (94)

The following lemma is a special one of Lemma 3.2 for the case where (47) applies.

Lemma 5.2. Let τ ≥ 0, pH(t, d
dt
)ψ(t) ·H(t− τ) ∈ L1

loc(R) and ψ̂τ (s) = Lτ [ψ(t)]. Then

pH(τ − d

ds
, s)ψ̂τ (s)=Lτ [pH(t,

d

dt
)ψ(t)]

+τ(1− τ)ψ′(τ) + ψ(τ)[c− 1− (a+ b− 1)τ ] + ψ(τ)τ(1− τ)s. (95)

The following lemma is a special one of Lemmas 3.4 and 3.5 for the case where (47) applies.

Lemma 5.3. Let H1(t) and H2(t) be given by (92) and (93), and ψH(t, τ) for fixed τ > 0 be given
by

ψH(t, τ) := c1(τ) ·H1(t) + c2(τ) ·H2(t), (96)

where c1(τ) and c2(τ) are constants which depend on τ and are so chosen that ψH(τ, τ) = 0. Then
GH(t, 0) and GH(t, τ) for τ > 0, which are given by

GH(t, 0) :=
1

c− 1
·H1(t)H(t), GH(t, τ) :=

1

τ(1− τ)ψ′
H(τ, τ)

ψH(t, τ)H(t− τ), (97)

are the Green’s functions for Equation (91), so that ĜH(s, 0) = L[GH(t, 0)] and ĜH(s, τ) =
Lτ [GH(t, τ)] for τ > 0 satisfy

pH(τ − d

ds
, s)ĜH(s, τ) = 1, (98)

for τ = 0 and τ > 0, respectively.

Proof. If we put u(t) = 1
c−1

· H1(t) in (94), then we have û(s) = ĜH(s, 0) on the lefthand side

of (94), and the righthand side of (94) is u(0)(c− 1) = 1, since pH(t, d
dt
)H1(t) = 0 and H1(0) = 1.

Thus (94) guarantees (98) for τ = 0. If we put ψ(t) = 1
τ(1−τ)ψ′

H
(τ,τ)

ψH(t, τ) and ψ(τ) = 0 in

(95), then we have ψ̂τ (s) = ĜH(s, τ) on the lefthand side of (95), and the righthand side of (95) is
τ(1− τ)ψ′(τ) = 1. Thus (95) guarantees (98) for τ > 0. �

Theorem 5.1. Let GH(t, τ) and ψH(t, τ) be those given in Lemma 5.3, Condition 3.1(i) be satisfied,
and uf (t) be given by

uf (t) =

∫ ∞

0

GH(t, τ)f(τ)dτ =

∫ t

0

ψH(t, τ)
f(τ)

τ(1− τ)ψ′
H(τ, τ)

dτ. (99)

Then

ûf (s) := LS [uf (t)] =
∫ ∞

0

ĜH(s, τ)f(τ)e−sτdτ =

∫ ∞

0

ψ̂H(s, τ)
f(τ)

τψ′
H(τ, τ)

e−sτdτ. (100)

Now uf (t) and ûf (s) are particular solutions of (91) and (94) for the terms f(t) and f̂(s), respectively.

14



Morita and Sato; JAMCS, 28(4): 1-22, 2018; Article no.JAMCS.43059

Proof. This is guaranteed by Corollary 3.1. �

The condition ψH(τ, τ) = 0 requires that c1(τ)·H1(τ) = −c2(τ)·H2(τ), and hence we may choose
ψH(t, τ) as

ψH(t, τ) =

{
H1(t)− H1(τ)

H2(τ)
·H2(t), |H1(τ)| < |H2(τ)|,

H2(τ)
H1(τ)

·H1(t)−H2(t), |H1(τ)| ≥ |H2(τ)|.
(101)

5.2 Solution of Equation (91) in which Condition 3.1(ii) is satisfied

We give the solution of Equation (91) of which the inhomogeneous term f(t) satisfies Condition 3.1(ii),
so that f̂(s) = sβ f̂β(s), and fβ(t) satisfies fβ(t)H(t) ∈ L1

loc(R).

The following lemma is a special one of Lemma 3.9 for the case where (47) applies.

Lemma 5.4. Let û(s) be a solution of (94), and p̃H(− d
ds
, s) be related with pH(− d

ds
, s) given by

(90), by

p̃H(− d

ds
, s) = s−βpH(− d

ds
, s)sβ . (102)

Then

p̃H(t, s) := t(1− t) · s2 + (c− β − (a+ b− 2β + 1)t) · s− (a− β)(b− β), (103)

and ŵ(s) = s−β û(s) satisfies

p̃H(− d

ds
, s)ŵ(s)= f̂β(s) + u0(c− 1)s−β . (104)

Theorem 5.1 shows that the particular solution of (104) for the term f̂β(s) is expressed by a
particular solution of

p̃H(t,
d

dt
)w(t)= fβ(t), t > 0. (105)

Remark 5.1. We note that p̃H(t, s) given by (103) is obtained from pH(t, s) given by (90), by
replacing a, b and c by a− β, b− β and c− β, respectively, and hence the complementary solutions
Hβ,1(t) andHβ,2(t) and Green’s functionsGH̃(t, 0) andGH̃(t, τ) of Equation (105) are obtained from
those H1(t), H2(t), GH(t, 0) and GH(t, τ), respectively, of Equation (91), by the same replacement.

Now in place of Theorem 5.1, we have the following theorem.

Theorem 5.2. LetGH̃(t, τ) and ψH̃(t, τ) be obtained fromGH(t, τ) and ψH(t, τ) by the replacement
stated in Remark 5.1, Condition 3.1(ii) be satisfied, and wg(t) be given by

wg(t) =

∫ t

0

GH̃(t, τ)fβ(τ)dτ =

∫ t

0

ψH̃(t, τ)
fβ(τ)

τψ′
H̃
(τ, τ)

dτ. (106)

Then

ŵg(s) =

∫ ∞

0

ĜH̃(s, τ)fβ(τ)e
−sτdτ =

∫ ∞

0

ψ̂H̃(s, τ)
fβ(τ)

τψ′
H̃
(τ, τ)

e−sτdτ. (107)

Now uf (t) := 0D
β
Rwg(t) and ûf (s) = sβŵg(s) are particular solutions of (91) and (94) for the terms

f(t) and f̂(s), respectively.
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Proof. Theorem 5.1 states that when wg(t) is given by (106), ŵg(s) := LS [wg(t)] is the particular
solution of (104) for the term f̂β(s), and Lemma 5.4 states that ûf (s) = sβŵg(s) is the particular
solution of (94) for the term f̂(s). With the aid of Equation (19) in Lemma 2.3, we confirm that
if uf (t) is given by uf (t) = 0D

β
Rwg(t), then ûf (s) = LS [uf (t)] is given by ûf (s) = sβŵg(s), when

β /∈ Z>0. �

Remark 5.2. If we put β = a or β = b, fβ(t) = 0 and v(t) = d
dt
w(t) in (105) with (103), (105)

is reduced to a homogeneous differential equation of the first order. By solving it, we obtain v(t),
and then u(t) = 0D

β−1
R v(t) gives the complementary solution H2(t) of (91), see [2].

5.3 Solution of Equation (91) in which Condition 3.1(iii) is satisfied

We give the solution of Equation (91) of which the inhomogeneous term f(t) satisfies Condition 3.1(iii),
so that f(t) = gν(t) =

1
Γ(ν)

tν−1 and f̂(s) = ĝν(s) = s−ν . Here we use β /∈ Z>−1 in place of −ν.

Lemma 5.5. Let f̂(s) = sβ, p̃H(t, s) be given by (103), and ĜH̃(s, 0) satisfy

p̃H(t, s)ĜH̃(s, 0) = 1. (108)

Then the particular solution of (94) for the term f̂(s) = sβ is given by

ûf (t) = sβĜH̃(s, 0). (109)

Proof. ûf (s) satisfies pH(t, s)ûf (t) = sβ and hence p̃H(t, s)s−β ûf (s) = 1 by (102). Comparing
this with (108), we see that (109) is satisfied. �

By Remark 5.1, with the aid of GH(t, 0) given by (97) and (92), we have

Lemma 5.6. As the solution of (108), we obtain

ĜH̃(s, 0) = LS [GH̃(t, 0)], GH̃(t, 0) =
1

c− β − 1
· 2F1(a− β, b− β; c− β; t). (110)

Theorem 5.3. Let Condition 3.1(iii) be satisfied, and GH̃(t, 0) be given by (110). Then the
particular solution of (91) is given by

uf (t) = 0D
β
RGH̃(t, 0) =

t−β

(c− β − 1)Γ(1− β)
· 3F2(1, a− β, b− β; 1− β, c− β; t), (111)

where 3F2(a1, a2, a3; c1, c2; z) =
∑∞
k=0

(a1)k(a2)k(a3)k
k!(c1)k(c2)k

zk.

Proof. We confirm that when uf (t) is given by (111), ûf (s) = LS [uf (t)] is given by (109) and
(110), with the aid of Equation (19) in Lemma 2.3. �

6 Solution of a Fractional Equation with Coefficients of
Polynomial of at Most First Degree

We now consider pF (t, s) given by

pF (t, s) = ts3/2 + ats+ bs1/2 + ac, (112)
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and then we give solutions of the fractional differential equation:

pF (t, 0DR)u(t) := t · 0D3/2
R u(t) + at · 0DR u(t) + b · 0D1/2

R u(t) + ac · u(t)
= f(t), t > 0. (113)

In this section, we adopt the following condition.

Condition 6.1. Condition 1.1 with the paragraph ”S is an enumerable set of ν ∈ C\Z<1” replaced
by ”S is an enumerable set of ν ∈ {z ∈ C|2z /∈ Z<1}”.

6.1 Complementary solutions of Equation (113)

In this section, we show that the basic complementary solutions of Equation (113) are given by

F1(t)= t
−1/2

∞∑
k=0

(−1 + 2c)k(−a)k

(−1 + 2b)kΓ(
k
2
+ 1

2
)
tk/2, (114)

F2(t)= t
−b+1/2

∞∑
k=0

(−a)k(1− 2b+ 2c)k

k!Γ(−b+ 3
2
+ k

2
)
tk/2. (115)

By taking account of Lemma 2.3 and Condition 6.1, the AC-Laplace transform of Equation (113)
is given by

pF (−
d

ds
, s)û(s) :=− d

ds
[(s3/2 + as)û(s)] + bs1/2û(s) + acû(s) = f̂(s) + (b− 1)u−1/2. (116)

The complementary solution of this differential equation is given by

(s3/2 + as)û(s)=Csb(1 + as−1/2)2b−2c, (117)

and hence

û(s)=Csb−3/2(1 + as−1/2)2b−2c−1 = Csb−3/2
∞∑
k=0

(−a)k(1− 2b+ 2c)k
k!

s−k/2. (118)

By the inverse AC-Laplace transform, we have u(t) = CF2(t).

The derivation of the basic complementary solutions given by (114) and (115) of Equation (113) by
using the basic method is as follows.

We assume that the solution and its Laplace transform are expressed by

u(t)= tα
∞∑
k=0

pk
tk/2

Γ(α+ k
2
+ 1)

, (119)

û(s)= s−α−1
∞∑
k=0

pks
−k/2, (120)

where p0 ̸= 0 and α ∈ C\Z<0. Using (120) in Equation (116) with inhomogeneous term (b −
1)u−1/2 = 1, we obtain

(α− 1

2
+ b)p0s

−α−1/2 +

∞∑
k=1

[(α+
k

2
− 1

2
+ b)pk + (α+

k

2
− 1

2
+ c)apk−1]s

−α−k/2−1/2 = 1. (121)
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We first give the complementary solution of this equation. Then (121) with 0 on the righthand side
requires α = 1

2
− b and

k

2
pk + (

k

2
− b+ c)apk−1 = 0, k ∈ Z>0, (122)

and hence

pk =
−a(k − 2b− 2c)

k
pk−1 =

(−a)k(1− 2b+ 2c)k
k!

p0, k ∈ Z>0. (123)

Putting α = 1
2
− b and p0 = C, and using (123) in (120) and (119), we obtain (118) and u(t) =

CF2(t), respectively, when F2(t) is given by (115).

We next consider Equation (121) with the inhomogeneous term 1. Then we put α = − 1
2
, and obtain

(−1 + b)p0 = 1,

(
k

2
− 1 + b)pk + (

k

2
− 1 + c)apk−1 = 0, k ∈ Z>0, (124)

and hence p0 = 1
b−1

and

pk = −apk−1

k
2
− 1 + c

k
2
− 1 + b

= (−a)kp0
(−1 + 2c)k
(−1 + 2b)k

, k ∈ Z>0. (125)

Using these in (119), we obtain u(t) = 1
b−1

F1(t), when F1(t) is given by (114). We note that

u−1/2 = 1
b−1

for this solution u(t).

6.2 Green’s Function for Equation (113)

In this section, we use u(ρ)(t), û(ρ)(s) and û
(ρ)
τ (s) to represent 0D

ρ
Ru(t), L̃[0D

ρ
Ru(t)] = sρû(s) and

Lτ [0Dρ
Ru(t)] = Lτ [u(ρ)(t)], respectively.

We express Equation (113) as

pF (t, 0DR)u(t) := t ·
d2

dt2
u(−1/2)(t) + at · d

dt
u(t) + b · d

dt
u(−1/2)(t) + ac · u(t) = f(t), t > 0,

(126)

where u(−1/2)(t) = 0D
−1/2
R u(t). We then express (116) as

pF (−
d

ds
, s)û(s) :=L[pF (t, 0DR)u(t)]−

d

ds
⟨s2û(−1/2)(s)⟩0 − a

d

ds
⟨sû(s)⟩0 + b⟨sû(−1/2)(s)⟩0.

(127)

Following Definition 3.1, we adopt the following definition.

Definition 6.1. For Equation (126), the Green’s function GF (t, τ) for τ ∈ R≥0 is so defined that
ĜF (s, τ) := Lτ [GF (t, τ)] satisfies

pF (τ − d

ds
, s)ĜF (s, τ) = 1. (128)

In discussing the Green’s function, we use the following lemma, which corresponds to Lemma 3.2.
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Lemma 6.1. Let τ ∈ R, ψ(t) be such that d2

dt2
ψ(t) ·H(t − τ) ∈ L1

loc(R), ψ̂τ (s) := Lτ [ψ(t)], and t̃
represent τ − d

ds
. Then

pF (t̃, s)ψ̂τ (s) = Lτ [pF (t, 0DR)ψ(t)] + ⟨pF (t̃, s)ψ̂τ (s)⟩0, (129)

where

⟨pF (t̃, s)ψ̂τ (s)⟩0 = τ [ψ(−1/2)(τ)s− ψ(1/2)(τ)− aψ(τ)] + (b− 1)ψ(−1/2)(τ). (130)

Proof. By Lemma 3.2, from (127), we obtain (129) with

⟨pF (t̃, s)ψ̂τ (s)⟩0 = t̃⟨s2ψ̂(−1/2)
τ (s)⟩0 + at̃⟨sψ̂τ (s)⟩0 + b⟨sψ̂(−1/2)

τ (s)⟩0. (131)

where ψ̂
(−1/2)
τ (s) = Lτ [0D−1/2

R ψ(t)]. In obtaining (130) from (131), we use

⟨s2ψ̂(−1/2)
τ (s)⟩0 = ψ(−1/2)(τ)s− ψ(1/2)(τ), ⟨sψ̂τ (s)⟩0 = ψ(τ),

⟨sψ̂(−1/2)
τ (s)⟩0 = ψ(−1/2)(τ), (132)

which follows from (36). �

Lemma 6.2. Let F1(t) and F2(t) be given by (114) and (115), and ψF (t, τ) for fixed τ ∈ R>0 be
expressed by

ψF (t, τ) := c1(τ)F1(t) + c2(τ)F2(t), (133)

where c1(τ) and c2(τ) are determined such that ψ
(−1/2)
F (τ, τ), which is the value of ψ

(−1/2)
F (t, τ) at

t = τ , is equal to 0. Then GF (t, 0) and GF (t, τ) for τ > 0, which are given by

GF (t, 0)=
1

b− 1
F1(t)H(t), (134)

GF (t, τ)=− 1

τ [ψ
(1/2)
F (τ, τ) + aψF (τ, τ)]

ψF (t, τ)H(t− τ), (135)

are the Green’s functions for Equation (113).

Proof. If we use τ = 0 and ψ(t) = GF (t, 0) in (129), we see that the righthand side is equal to

(b − 1)u(−1/2)(0) = 1, since F
(−1/2)
1 (0) = 1 is confirmed by (114). If we use ψ(t) = GF (t, τ) in

(129), we see that the righthand side is equal to 1. �

Remark 6.1. In the last paragraph of Section 6.1, it is shown that Equation (134) is the solution
of Equation (128) for τ = 0.

6.3 Particular solution of Equation (113) in terms of the Green’s
function

Corresponding to Corollary 3.1, we have

Theorem 6.1. Let GF (t, τ) be defined by Definition 6.1 for Equation (113), and Condition 3.1(i)
be satisfied. Then uf (t) and ûf (s) given by

uf (t) :=

∫ ∞

0

GF (t, τ)f(τ)dτ,

ûf (s) =

∫ ∞

0

ĜF (s, τ)f(τ)e
−sτdτ, (136)

are particular solutions of (113) and (116) for the terms f(t) and f̂(s), respectively.
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Remark 6.2. In Section 3, we introduce p̃2(t, s) related with p2(t, s), by (63). We denote the
corresponding quantity for pF (t, s), by p̃F (t, s). By using formula (66), we obtain

p̃F (t, s) := s
−βpF (t, s)s

β = s−β(ts3/2 + ats+ bs1/2 + ac)sβ

= (ts− β)s1/2 + a(ts− β) + bs1/2 + ac

= ts3/2 + ats+ (b− β)s1/2 + a(c− β). (137)

We note that p̃F (t, s) is given by pF (t, s) with b and c replaced by b− β and c− β, respectively.

Remark 6.3. When we study the problem in which Condition 3.1(ii) or 3.1(iii) applies, we use
p̃F (t, s) and the equation given by

p̃F (t,
d

dt
)w(t)= fβ(t), t > 0. (138)

By Lemma 3.9, we have

Lemma 6.3. Let p̃F (t, s) be given by (137), and ŵ(s) satisfy

p̃F (−
d

ds
, s)ŵ(s)= f̂β(s). (139)

Then û(s) given by û(s) = sβŵ(s) is the particular solution of (116) for the term f̂(s) = sβ f̂β(s).

Definition 6.2. For Equation (138), the Green’s function GF̃ (t, τ) for τ ∈ R≥0 is such that
ĜF̃ (s, τ) := Lτ [GF̃ (t, τ)] satisfies

p̃F (τ − d

ds
, s)ĜF̃ (s, τ)=1. (140)

Remark 6.4. Taking account of Definitions 6.2 and 6.1 and Remark 6.2, we note that GF̃ (t, β)
and ĜF̃ (s, β) are GF (t, β) and ĜF (s, β) with b and c replaced by b− β and c− β, respectively.

Corresponding to Theorems 4.2 and 5.2, we have

Theorem 6.2. Let GF̃ (t, τ) be defined by Definition 6.2, Condition 3.1(ii) be satisfied for β
satisfying 2β /∈ Z>0, and wg(t) be given by

wg(t) :=

∫ t

0

GF̃ (t, τ)fβ(τ)dτ. (141)

Then

ŵg(s) :=L[wg(t)] =
∫ ∞

0

ĜF̃ (s, τ)fβ(τ)e
−τsdτ. (142)

Now ûf (s) := sβŵg(s) is the particular solution of (116) for the term f̂(s) = sβ f̂β(s), and uf (t) =

0D
β
Rwg(t) is a particular solution of (113) for the term f(t) = 0D

β
Rfβ(t).

Proof. By Theorem 6.1, ŵg(s) given above is the solution of (139), and hence we complete the
proof with the aid of Lemmas 6.3 and 3.9. �

Theorem 6.3. Let β /∈ Z>−1, Condition 3.1(iii) be satisfied for β satisfying 2β /∈ Z>0, p̃F (t, s) be
given by (137), and GF̃ (t, 0) be defined by Definition 6.2. Then the particular solution of (116) for

the term f̂(s) = sβ is given by

ûf (s) = sβĜF̃ (s, 0), (143)

and uf (t) = 0D
β
RGF̃ (t, 0) is a particular solution of (113) for the term f(t) = g−β(t) =

1
Γ(−β) t

−β−1.

Proof. When f̂β(s) = 1, the solution ŵ(s) of (139) is given by ŵ(s) = ĜF̃ (s, 0) by Definition 6.2,
and hence we complete the proof with the aid of Lemmas 6.3 and 3.9. �
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7 Conclusion

In the present paper, we are conserned with differential equations which are satisfied by a function
u(t) for t ∈ R>0.

We first consider a differential equation with constant coefficients. If the solution u(t) has the
Laplace transform û(s), the solution is obtained by taking the Laplace transform of the equation,
solving it for û(s), and then taking the inverse Laplace transform of it. Even when this is not
applicable, we can solve it by the methods of operational calculus or distribution theory. When
the equation is inhomogeneous, the Green’s function is used in distribution theory [15, 16, 11, 17].
In [3], the solutions obtained by distribution theory were shown to be also obtained by using the
AC-Laplace transform.

We next consider a homogeneous differential equation with polynomial coefficients. If the solution
u(t) has the Laplace transform û(s), the solution is obtained by taking the Laplace transform of the
equation. Even when this is not applicable, we can solve it by the methods of operational calculus
[8, 9, 7] or distribution theory [6, 18]. In [1, 2], the solutions obtained by distribution theory were
shown to be also obtained by using the AC-Laplace transform.

We finally consider an inhomogeneous differential equation with polynomial coefficients. In [3], the
solution was shown to be obtained by the methods of distribution theory with the aid of the Green’s
function; see also [16, 19]. In the present paper, the solutions obtained by distribution theory are
also obtained by using the AC-Laplace transform.
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