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Abstract

The majority of the Optimal design research has focused on linear models and binary data
models. However, a couple of researches have recently called attention to Poisson regression
models with random effects. In the present paper, we theoretically and numerically discuss
the optimal designs for multiple Poisson regression model with random coefficients and two
explanatory variables. Since there is no closed form for the information matrix, the quasi-
information approach is applied in order to find the optimal designs in this study. Some special
cases are illustrated and a new version of equivalence theorem is obtained.
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1 Introduction

The main goal of the optimal design is to obtain the best experimental setting xi which maximizes
the information matrix of parameters. Optimal experimental designs for generalized linear models
have received increasing attention in recent years. The majority of investigations into optimal
designs for generalized linear models (GLMs) have been dedicated to binary data models. Abdelbasit
and Plackett [1], Minkin [2] and many others have studied the optimal designs for logistic models.
Poisson regression model is an appropriate model to explain count data. Minkin [3] and Yanping et
al. [4] have also conducted extensive research on the optimal designs for Poisson regression models.

In the above studies, they considered Poisson regression model for fixed effects, a fact may be in
challange if we cannot suppose that the same effect for different individuals. In this study, we
consider the multiple Poisson random coefficients regression model. This model is a special case of
generalized linear mixed models (GLMMs)[5].

Information matrix plays a key role in optimal design theory. Apparently, this role originates
from the asymptotic relation between information matrix and variance-covariance matrix of the
maximum likelihood estimator of parameters. Due to the random effects of GLMMs, the likelihood
function and consequently the information matrix cannot be obtained in an explicit form. We apply
a quasi-likelihood approach which was extensively studied by McCulagh [6].

Niaparast [7] derived optimal designs for the quasi-likelihood estimation in a Poisson random
intercept regression model. Furthermore, Niaparast and Schwabe [8] extended the results to general
mixed effects Poisson regression.

The information matrix for GLMMs depends on the unknown parameters. Therefore, it poses a
two-fold problem: first we must know the parameters to find the optimal designs, and second, we
need to designs first in order to estimate the parameters. A simple approach to this problem is to
look for locally optimal designs which are based on an initial guess of the parameters. Then, we
can achieve the optimal designs which are optimal with respect to the initial guess.

The present paper is organized as follow. In section 2 we mention the results which have been
obtained by Niaparast [7] and Niaparast and Schwabe [8]. The optimal designs for some special
cases of general mixed effects Poisson are discussed in sections 3 and 4. Moreover, all proofs are
presented in appendix following the discussion.

2 The Structure of Model and Design Specification

The results of this paper are in continuation of Niaparast [7] and Niaparast and Schwabe [8],
who obtained some new results on D-optimal designs for Poisson regression models with random
coefficients. Since we need their notation and results, we review them here.
Consider a Poisson regression model with random coefficients as following

Yij |bi
ind∼ Poisson(λij) ;

{
i = 1, · · · , n
j = 1, · · · ,mi

(2.1)

where Yij is the jth replication for the individual i at the experimental setting xij from the
experimental region X , and the mean of the response λij = λ(xij , bi) is linked to the linear predictors
by the following equation

log(λij) = fT (xij)bi

We also assume that f = (f0, f1, · · · , fp−1) is the known regression function and bi is a p× 1 vector
of random effects which is normally distributed with mean vector β = (β0, · · · , βp−1) and known
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variance-covariance matrix Σ. Moreover, we suppose cov(bi, bj) = 0 for i ̸= j.
LetYi = (Yi1, · · · , Yimi) be the vector of allmi observations for individual i, regarding the definition
of model (2.1), the global mean and the variance-covariance matrix of Yi can be obtained as

E(Yi) = (µ(xij), · · · , µ(ximi)) with µ(xij) = exp(fT (xij)β +
1

2
σ(xij ,xij))

cov(Yi) = Ai +AiCiAi

where Ai = diag{µ(xij)}j=1,··· ,mi is a diagonal matrix with entries µ(xij) for j = 1, · · · ,mi and
Ci = (c(xij ,xik))j,k=1,··· ,mi . Here c(xij ,xik) = exp(σ(xij ,xik))−1 and σ(xij ,xik) = fT (xij)Σf(xik)
are the variance correction and the dispersion function term, respectively.

Let ξ =

{
x1, · · · ,xs

p1, · · · , ps

}
be the design through which we observe all individuals under that. In

other words, we omitted index i of the individual designs, and hence, mi = m for i = 1, · · · , n. Here
pj =

nj

m
(j = 1, · · · , s) stands for the proportion of observations taken at xj . Niaparast and Schwabe

(2013) have obtained the quasi-information matrix for the vector of fixed effects parameters, β in
Poisson regression model with random effects as follow,

M(ξ) = FT
ξ (A

−1
ξ +Cξ)

−1Fξ (2.2)

where Fξ = (f(x1), · · · , f(xs))
T , Aξ = diag(njµ(xj))j=1,··· ,s and Cξ = (c(xj ,xk))j,k=1,··· ,s.

Finally, the following theorem is essential to evaluate D-optimal designs for Poisson regression model
with random coefficients.

Theorem 2.1. An individual design ξ is locally D-optimal at β for the quasi-information in the
mixed effects Poisson regression model, if and only if

d(x, ξ∗) ≤ p− tr(M(ξ∗)−1FT
ξ∗(A

−1
ξ∗ +Cξ∗)

−1Cξ∗(A
−1
ξ∗ +Cξ∗)

−1Fξ∗)

for all x ∈ X . Moreover, equality holds for all support points of ξ∗.

Here d(x, ξ) = mµ(x)(f(x) − FT
ξ (A

−1
ξ + Cξ)

−1cξ,x)
TM(ξ)−1(f(x) − FT

ξ (A
−1
ξ + Cξ)

−1cξ,x) is the
sensitivity function (in x) of the design ξ and cξ,x = (c(xj ,x))j=1,...,s is a vector of joint correction
terms for the settings x1, ...,xs of a design ξ for prediction of a further setting x.
The proof can be found in Niaparast and Schwabe(2013).

3 D-optimal Designs for Multiple Poisson Regression
Model with Random Intercept

We consider two cases of the multiple Poisson regression models with random intercept

i)Yj |b0
ind∼ P (λj) ;λj = λ(xj , b0) = exp(b0 + β1x1j + β2x2j) (3.1)

ii)Yj |b0
ind∼ P (λj) ;λj = λ(xj , b0) = exp(b0 + β1x1j + β2x2j + β3x1jx2j) (3.2)

where b0 is assumed to be normally distributed with the mean β0 and known variance σ2 . The
first model is a special case of model (2.1) with β = (β0, β1, β2), fT (xj) = (1, x1j , x2j) and
Σ = diag(σ2, 0, 0) and the mean function, dispersion function and correction term will be µj =
exp(fT (xj)β + 1

2
σ2), (σ(xj ,xk))j,k=1,2,3 = σ2 and (c(xj ,xk))j,k=1,2,3 = exp(σ2)− 1 respectively.

The second model is also a special case of model (2.1) with β = (β0, β1, β2, β3), fT (xj) =
(1, x1j , x2j , x1jx2j) and Σ = diag(σ2, 0, 0, 0). The mean function, dispersion function and correction
term will be µj = exp(fT (xj)β + 1

2
σ2), (σ(xj ,xk))j,k=1,...,4 = σ2 and (c(xj ,xk))j,k=1,...,4 =

exp(σ2)− 1, respectively.

3



Naderi et al; ARJOM, 9(1): 1-11, 2018; Article no.ARJOM.40150

Suppose that q1j = exp(β1x1j) , q2j = exp(β2x2j) and µ0 = exp(β0 +
1
2
σ2) the mean of Yj will be

as µj = q1jq2jµ0. In practice, most applications of this model, like bioscience, pharmacokinetics
etc., the design region is the non-negative real line or a subset of that. We also assume that the
relation between response mean and regressor variables is negative, i.e. µj is a decreasing function
of q1j and q2j . Therefore, canonical standardized mean µ̃j = q1jq2j will be in (0,1]. So the design
region can be limited to 0 ≤ q1j ≤ 1 and 0 ≤ q2j ≤ 1 .

Theorem 3.1. Consider the model (3.1). In terms of the canonical standardized mean, let ξ ={
(q11, q21) (q12, q22) (q13, q23)

p1 p2 p3

}
be the design minimal supported points, the local D-optimal

design to estimate β depends on the parameters only through γ(m,β0, σ
2) = meβ0+

1
2
σ2

(eσ
2

− 1) as
follow

det(M(ξ)) ∝ p1p2p3q11q21q12q22q13q23(det(F
∗))2

(1 + γ(m,β0, σ2)(p1q11q21 + p2q12q22 + p3q13q23))

where p3 = (1 − p1 − p2) ,F ∗ =

 1 1 1
ln(q11) ln(q12) ln(q13)
ln(q21) ln(q22) ln(q23)

 and q1j = exp(β1x1j), q2j =

exp(β2x2j) for (j = 1, 2, 3) .

According to Theorem (3.1), numerical methods can be used to minimize −log(det(M(ξ))) in order
to find D-optimal designs. The D-optimal design for some representative values of γ(m,β0, σ

2) have
been listed in Table 1.

Table 1. Locally D-optimal design for model (3.1)

γ(m,β0, σ
2) p1 p2 q11 q21 q12 q22 q13 q23

0 0.3333 0.3333 1 0.1353 1 1 0.1353 1
0.5 0.3400 0.3200 1 0.1303 1 1 0.1303 1
2 0.3500 0.3000 1 0.1222 1 1 0.1222 1
5 0.3799 0.2399 1 0.1133 1 1 0.1133 1
10 0.3954 0.2079 1 0.1061 1 1 0.1061 1
50 0.4131 0.1744 1 0.0961 1 1 0.0961 1
100 0.4150 0.1700 1 0.0947 1 1 0.0947 1
1000 0.4183 0.1633 1 0.0939 1 1 0.0939 1

Regarding Theorem (2.1) we have evaluated sensitivity function, over the experimental region for
the Model (3.1), and the results in Table 1 have been confirmed. We have drawn sensitivity function
with respect to q1j and q2j , for two special values of γ(m,β0, σ

2) in Fig. 1.

Theorem 3.2. Consider the model (3.2). In terms of the canonical standardized mean, let

ξ =

{
(q11, q21) (q12, q22) (q13, q23) (q14, q24)

p1 p2 p3 p4

}
be the design with minimal support points,

the local D-optimal design to estimate β depends on the parameters only through γ(m,β0, σ
2) =

meβ0+
1
2
σ2

(eσ
2

− 1) and z = β3
β1β2

as follow

det(M(ξ)) ∝
∏4

j=1 pj
∏4

j=1 q1jq2j exp(z(
∑4

j=1 ln(q1j)ln(q2j)))(det(F
∗))2

(1 + γ(m,β0, σ2)(
∑4

j=1 pjq1jq2j exp(zln(q1j)ln(q2j))))
(3.3)
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Fig. 1. Sensitivity function d(x; ξ∗) over the unrestricted design region for model (3.1)

where p4 = (1− p1 − p2 − p3) ,

F ∗ =


1 1 1 1

ln(q11) ln(q12) ln(q13) ln(q14)
ln(q21) ln(q22) ln(q23) ln(q24)

ln(q11)ln(q21) ln(q12)ln(q22) ln(q13)ln(q23) ln(q14)ln(q24)

 and q1j = exp(β1x1j), q2j =

exp(β2x2j) for (j = 1, 2, 3, 4) .

Numerical methods lead us to obtain the locally D-optimal design for some representative values
γ(m,β0, σ

2) and z which are listed in Table 2.

Table 2. D-optimal design for the model (3.2)

z = − 1
5

γ(m,β0, σ
2) p1 p2 p3 q11 q21 q12 q22 q13 q23 q14 q24

0 0.250 0.250 0.250 0.135 1 1 0.135 1 1 0.216 0.216
0.5 0.259 0.259 0.230 0.130 1 1 0.130 1 1 0.215 0.215
2 0.260 0.260 0.209 0.128 1 1 0.128 1 1 0.214 0.214
5 0.264 0.264 0.200 0.127 1 1 0.127 1 1 0.213 0.213
10 0.270 0.270 0.197 0.126 1 1 0.126 1 1 0.213 0.213
50 0.280 0.280 0.150 0.118 1 1 0.118 1 1 0.212 0.212
100 0.283 0.283 0.145 0.104 1 1 0.104 1 1 0.209 0.209
1000 0.290 0.290 0.137 0.100 1 1 0.100 1 1 0.206 0.206

Using Theorem (2.1), the results which have been obtained in Table 2, have been confirmed and
shown in Fig. 2 for two different values of γ(m,β0, σ

2).

5



Naderi et al; ARJOM, 9(1): 1-11, 2018; Article no.ARJOM.40150

Fig. 2. Sensitivity function d(x; ξ∗) over the design space for the Model (3.2)

4 D-optimal Designs for Multiple Poisson Regression
Model with Random Slopes

We consider two cases of the multiple Poisson regression model with random slopes as following

iii) Yj |b ind∼ P (λj) ;λj = λ(xj , b) = exp(β0 + bx1j + β2x2j) (4.1)

The above model is a special case of model (2.1) that b is assumed to be normally distributed
with the mean β1 and known variance σ2 and vector of fixed effect parameters β = (β0, β1, β2),
variance-covariance matrix Σ = diag(0, σ2, 0) and fT (xj) = (1, x1j , x2j).
The dispersion function, mean function and correction term could be indicated as (σ(xj ,xk))j,k=1,2,3 =
σ2x1jx1k , µj = exp(β0 + β1x1j + β2x2j + 1

2
σ2x2

1j) and (c(xj ,xk))j,k=1,2,3 = exp(σ2x1jx1k) − 1,
respectively.

iv) Yj |b, b′
ind∼ P (λj) ;λj = λ(xj , b, b

′) = exp(β0 + bx1j + b′x2j) (4.2)

This model is also a special case of general model (2.1) that b and b′ are assumed to be normally
distributed with the mean β1 andβ2 respectively. We also suppose that b and b′ have the same
known variance σ2. Based on model (2.1), we have β = (β0, β1, β2), Σ = diag(0, σ2, σ2) and
fT (xj) = (1, x1j , x2j). Here (σ(xj ,xk))j,k=1,2,3 = σ2(x1jx1k + x2jx2k), µj = exp(β0 + β1x1j +
β2x2j +

1
2
σ2(x2

1j + x2
2j) and (c(xj ,xk))j,k=1,2,3 = exp(σ2(x1jx1k + x2jx2k))− 1 stand for dispersion

function, mean function and correction term respectively.

We suppose that the design regions are also a non-negative subset of real numbers.

Considering µ0 = exp(β0) using the same notation in the previous section, the mean functions,

µj , can be represented as µj = q1jq2j exp(
1
2
σ2(

ln(q1j)

β1
)2)µ0 and µj = q1jq2j exp(

1
2
σ2((

ln(q1j)

β1
)2 +

(
ln(q2j)

β2
)2)µ0 for model (4.1) and model (4.2), respectively.

Theorem 4.1. Consider model (4.1) and Model(4.2). Based on the canonical standardized mean,

let ξ =

{
(q11, q21) (q12, q22) (q13, q23)

p1 p2 p3

}
be the design with minimal support points, and determinant
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of quasi-information matrix will be as follow

det(M(ξ)) ∝ m3p1p2p3µ1µ2µ3(det(F
∗))2

(1 + f(cij , pj ,m, µj))

where

F ∗ =

 1 1 1
ln(q11) ln(q12) ln(q13)
ln(q21) ln(q22) ln(q23)

 with q1j = exp(β1x1j) and q2j = exp(β2x2j)for(j =

1, 2, 3). Also

f(cij , pi,m, µj) = mp1c11µ1 +mp2c22µ2 +mp3c33µ3 −m2p1p2c
2
12µ1µ2

− m2p1p3c
2
13µ1µ3 −m2p2p3c

2
23µ2µ3 +m2p1p2c11c22µ1µ2 +m2p1p2c11c33µ1µ3

+ m2p2p3c22c33µ2µ3 −m3p1p2p3c11c
2
23µ1µ2µ3 −m3p1p2p3c

2
13c22µ1µ2µ3

− m3p1p2p3c
2
12c33µ1µ2µ3 + 2m3p1p2p3c12c13c23µ1µ2µ3

+ 2m3p1p2p3c11c22c33µ1µ2µ3

is a known function. Here cij is the (i,j)th element matrix Cξ which is defined as

Cξ =

 eσ
2x2

11 − 1 eσ
2x11x21 − 1 eσ

2x11x31 − 1

eσ
2x11x21 − 1 eσ

2x2
21 − 1 eσ

2x21x31 − 1

eσ
2x31x11 − 1 eσ

2x31x21 − 1 eσ
2x2

31 − 1

 and

Cξ =

 eσ
2(x2

11+x2
21) − 1 eσ

2(x11x12+x21x22) − 1 eσ
2(x11x13+x21x23) − 1

eσ
2(x11x12+x21x22) − 1 eσ

2(x2
12+x2

22) − 1 eσ
2(x12x13+x22x23) − 1

eσ
2(x13x11+x23x13) − 1 eσ

2(x13x23+x23x22) − 1 eσ
2(x2

13+x2
23) − 1


for different models (4.1) and (4.2), respectively .

Using the above theorem, numerical methods can be used to minimize −log(det(M(ξ))) in order
to find D-optimal design for models (4.1) and (4.2), respectively. The locally D-optimal designs
for some representative values of β0, β1, β2 and m are listed in Tables 3 and 4 for models (4.1) and
(4.2), respectively. The results have been evaluated by theorem (2.1).

Table 3. D-optimal design for model (4.1)

m = 200 β0 = −2 β1 = −5 β2 = −5

σ p1 p2 q11 q21 q12 q22 q13 q23

0 0.3333 0.3333 0.1353 1 1 0.1353 1 1
0.5 0.3226 0.3385 0.1300 1 1 0.1353 1 1
1 0.2930 0.3532 0.1170 1 1 0.1353 1 1
1.5 0.2655 0.3767 0.1168 1 1 0.1353 1 1
2 0.2059 0.3967 0.1367 1 1 0.1353 1 1
2.5 0.1867 0.4066 0.1938 1 1 0.1353 1 1
3 0.1735 0.4151 0.2528 1 1 0.1353 1 1
4 0.1411 0.4295 0.3435 1 1 0.1353 1 1
5 0.1271 0.4541 0.4244 1 1 0.1353 1 1

7



Naderi et al; ARJOM, 9(1): 1-11, 2018; Article no.ARJOM.40150

Fig. 3. Sensitivity function d(x; ξ∗) over the design space for model (4.1)

Table 4. D-optimal design for model (4.2)

m = 200 β0 = −2 β1 = −5 β2 = −5

σ p1 p2 q11 q21 q12 q22 q13 q23

0 0.3333 0.3333 0.1353 1 1 0.1353 1 1
0.5 0.3277 0.3277 0.1299 1 1 0.1299 1 1
1 0.3104 0.3104 0.1170 1 1 0.1170 1 1
1.5 0.2655 0.2655 0.1168 1 1 0.1168 1 1
2 0.2462 0.2462 0.1474 1 1 0.1474 1 1
2.5 0.2219 0.2219 0.2024 1 1 0.2024 1 1
3 0.2056 0.2056 0.2528 1 1 0.2528 1 1
4 0.1872 0.1872 0.3668 1 1 0.3668 1 1
5 0.1765 0.1765 0.4501 1 1 0.4501 1 1

Fig. 4. Sensitivity function d(x; ξ∗) over the design space for model (4.2)
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Figs. 3 and 4 have been drawn for two cases in each model.

5 Conclusions

This paper aims at providing an extension and an application for the results in Niaparast and
Schwabe (2013). We obtain some new theoretical results to find D-optimal designs for the quasi-
likelihood estimators of parameters. The numerical results indicated the impact of the random
coefficients on the D-optimal designs for some particular cases of multiple Poisson random coefficient
regression model. Also the obtained results indicate that the D-optimal designs for different values
of parameters are completely different from the standard experimental designs with the same
proportion of design points.

For Poisson regression model, the explicit form for Information matrix cannot be obtained, hence,
we applied a qusie-likelihood approach.

The point, which has not been considered here, is the efficiency of the D-optimal designs for
quasi-likelihood estimation of the fixed effects parameters versus D-optimal designs for likelihood
estimation of the same parameters.

A Bayesian approach could be applied as an alternative method for locally D-optimal designs.
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Appendix

Proof of Theorem (3.1)

Regarding the Equation (2.2), for the design ξ =

{
(q11, q21) (q12, q22) (q13, q23)

p1 p2 p3

}
the quasi-

information matrix for β is given as follow

M(ξ) = F T
ξ (A

−1
ξ +Cξ)

−1F ξ (5.1)

where F T
ξ =

 1 1 1
x11 x12 x13

x21 x22 x23

 , Aξ =

 n1µ1 0 0
0 n2µ2 0
0 0 n3µ3

 andCξ = (eσ
2

−1)
(

1 1 1
) 1

1
1

.

For model (3.1) , we have:

µ0 = eβ0+
1
2
σ2

q1j = eβ1x1j q2j = eβ2x2j

then we can represent µj as follow

µj = exp(β0 + β1x1j + β2x2j +
1

2
σ2) = q1jq2jµ0

If we combine these expressions and replace in (5.1), after using some matrix algebra and a
straightforward calculation the result follows.

Proof of Theorem (3.2)

We consider the four points design ξ =

{
(q11, q21) (q12, q22) (q13, q23) (q14, q24)

p1 p2 p3 p4

}
. For model

(4.2), the design matrix, the diagonal matrix of the expectations and the matrix of the correction
terms are:

F ξ =


1 1 1 1
x11 x12 x13 x14

x21 x22 x23 x24

x11x21 x12x22 x13x23 x14x24

 ,Aξ =


n1µ1 0 0 0
0 n2µ2 0 0
0 0 n3µ3 0
0 0 0 n4µ4

 and Cξ =

(eσ
2

− 1)
(

1 1 1 1
)

1
1
1
1

 respectively. The mean function µj can be represented as

µj = exp(β0 + β1x1j + β2x2j + β3x1jx2j +
1

2
σ2) = q1j .q2j . exp(z.ln(q1j).ln(q2j)).µ0

where µ0 = eβ0+
1
2
σ2

, q1j = eβ1x1j , q2j = eβ2x2j and z = β3
β1β2

. By replacing these expressions in the
quasi-information matrix, relation (5.1), and after using some matrix algebra and a straightforward
calculation the result follows.

Proof of Theorem (4.1)

Let mj = mpj . From Equation (2.2), for the design ξ =

{
(q11, q21) (q12, q22) (q13, q23)

p1 p2 p3

}
, the

quasi-information matrix is given as follow

M(ξ) = F T (ξ)(A−1(ξ) +Cξ)
−1F (ξ) (5.2)

with F T (ξ) =

 1 1 1
x11 x12 x13

x21 x22 x23

 and A =

 n1µ1 0 0
0 n2µ2 0
0 0 n3µ3

. Here µj = exp(β0 +

β1x1j + β2x2j +
1
2
σ2x2

1j) = q1jq2j exp(
1
2
σ2(

ln(q1j)

β1
)2)µ0 for (j = 1, 2, 3) and µj = exp(β0 + β1x1j +

10
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β2x2j +
1
2
σ2(x2

1j + x2
2j) = q1jq2j exp(

1
2
σ2(

ln(q1j)

β1
)2 +

ln(q2j)

β2
)2)µ0 for (j = 1, 2, 3) stand for Model

(4.1) and Model (4.2) respectively, where µ0 = eβ0 , q1j = eβ1x1j and q2j = eβ2x2j for (j =

1, 2, 3). Also Cξ can be represented as Cξ =

 eσ
2x2

11 − 1 eσ
2x11x12 − 1 eσ

2x11x13 − 1

eσ
2x11x12 − 1 eσ

2x2
12 − 1 eσ

2x12x13 − 1

eσ
2x13x11 − 1 eσ

2x13x12 − 1 eσ
2x2

13 − 1

 and

Cξ =

 eσ
2(x2

11+x21)
2

− 1 eσ
2(x11x12+x21x22) − 1 eσ

2(x11x13+x21x23) − 1

eσ
2(x11x12+x12x22) − 1 eσ

2(x2
12+x2

22) − 1 eσ
2(x12x13+x22x23) − 1

eσ
2(x13x11+x23x13) − 1 eσ

2(x13x23+x23x22) − 1 eσ
2(x2

13+x2
23) − 1

 for models (4.1)

and (4.2), respectively. The result will be obtained after replacing the items in quasi-information
(5.2) with the above corresponding expressions and a straightforward calculation.
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