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Abstract
Background: Learning and memory may decline due to Alzheimer’s disease (AD) in older 
adults. A reduction in cyclic guanosine monophosphate concentration and an increase 
in phosphodiesterase activity have been reported in the process of aging. Although 
phosphodiesterase (PDE) type 5 inhibitor, Tadalafil is used to treat erectile dysfunction; PDE 
inhibitors possibly prevent cognition impairment in aging. This study was designed to investigate 
the effects of tadalafil on memory in middle-aged and young healthy and AD rats.
Methods: Memory impairment was induced by intracerebroventricular (ICV) administration 
of streptozotocin (STZ; 3 mg/kg) in AD rats. Male Wistar rats (middle-aged and young) were 
distributed into six groups as follows: two control, two AD, and two AD+tadalafil (1 mg/kg) 
groups. Saline or tadalafil was administered once a day orally for 40 consecutive days. Animals 
were tested using novel object recognition (NOR), passive avoidance learning (PAL), and Morris 
water maze (MWM) tests.
Results: Aged AD rats exhibited a significant impairment in cognition in the NOR test and 
impaired learning and memory in PAL and MWM tests compared with the control aged rats. 
Tadalafil treatment in aged AD rats significantly improved the discrimination index in the NOR 
test, decreased the time spent in the dark compartment in the PAL test, and increased time spent 
in the target quadrant in MWM tests compared with aged AD rats. In young AD rats, treatment 
with tadalafil significantly enhanced cognition, learning, and memory in the NOR, PAL, and 
MWM tests compared with young AD rats treated with saline.
Conclusion: Tadalafil treatment in aged rats improves cognition and memory after STZ-induced 
(ICV) memory impairment. It can be concluded that chronic treatment with tadalafil is protective 
against cognitive, learning, and memory impairment in both young and aged subjects. 
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Introduction
Memory  is an ability to  encode,  store,  retain,  and recall 
information and past experiences in the brain.1 Learning 
and memory are cognitive functions2 that are dependent 
on physical and chemical changes in neurons of the 
brain.2 Learning promotes information processing and 
storage in a variety of brain regions.3 Aging is associated 
with dendritic spine loss, cellular decline, a decrease in 
spine densities, and changes in different neurotransmitter 
systems (such as acetylcholine) and intracellular signaling 
and enzymes (such as cyclic guanosine monophosphate 
and phosphodiesterase) in the brain.4 Learning and 
memory may decline due to neurodegenerative diseases, 
such as Alzheimer’s disease (AD) through aging.3,5 AD 
is characterized by the accumulation of extracellular 

amyloid plaques and intracellular neurofibrillary tangles.6,7 
It is associated with progressive brain volume loss, brain 
inflammation, loss of a large number of neurons, cognitive 
disorders, and memory deficits.8,9 
The cyclic guanosine monophosphate (cGMP) is an 
important secondary messenger. It is essential in a 
variety of cellular functions, including cognition, 
learning, memory, and neuroplasticity.10-12 Changes 
in various neurotransmitters, cyclic adenosine 
monophosphate (cAMP), and cGMP signaling have 
been reported in the aged brain.13,14 A decline in the 
level of cyclic nucleotides is associated with cognitive 
dysfunction.13-15 Phosphodiesterase type 5 (PDE5) 
enhances cGMP signaling by reducing the degradation of 
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this cyclic nucleotide.16 PDE5 is expressed in neurons of 
the hippocampus and cortex.17 Tadalafil is a selective PDE5 
inhibitor.18 It is widely used for the management of erectile 
dysfunction.19 The effectiveness of tadalafil on anxiety,20 
morphine withdrawal syndrome,21 cerebral ischemia 
injury,22 and ischemic stroke23 has been reported. It is 
suggested that phosphodiesterase enzyme inhibitors may 
exert their therapeutic effects on some neurologic diseases 
through controlling intraneuronal cGMP and cAMP levels 
in the brain.17,24,25 
There are different animal models of dementia.26 Sporadic 
AD was induced by intracerebroventricular (ICV) injection 
of streptozotocin (STZ).7,27,28 ICV administration of STZ 
has been described as a useful approach for sporadic 
AD induction in rodents.6,29,30 In addition, aging animals 
are suitable models that mimic the neurochemical and 
morphological alterations and cholinergic hypofunction 
similar to the pathophysiology of AD.26,31-33 Tadalafil is 
a drug that is used for the treatment of nervous system 
disorders. It also improves memory in aged animals.31 
Aging is associated with a decline in learning and memory 
and AD is linked to the severity of cognitive impairment 
impairm3,5 However, PDE inhibitors have been suggested 
as a target for cognition enhancement.24 They enhance 
working memory and reduce hippocampal oxidative stress 
in aged mice34 and a rat model of hyperhomocysteinemia.35 
However, in some studies, they have been reported with 
no effects on memory36 they did not prevent the cannabis-
induced memory impairment37 and caused amnesia.38 On 
the other hand, no study has yet been conducted on the 
effect of long-term tadalafil administration on cognitive 
function in both normal aging and AD. Therefore, this 
study was conducted to investigate the cognitive effect of 
long-term tadalafil administration in normal aging and 
AD.

Materials and Methods
Animals 
The experiments were carried out in young (2 months) and 
middle-aged (13-14 months old) male Wistar rats obtained 
from the animal house of Hamadan University of Medical 
Sciences. Rats were kept under controlled environmental 
conditions (temperature: 21±2 °C, 12:12h light/dark cycle) 
with ad libitum food and water. 

Surgery and administration
Briefly, the rats were anesthetized with ketamine (100 mg/
kg, Behbod Darou, Tehran, Iran) and xylazine (10 mg/
kg, Alfasan, Woerden, Netherlands). The anesthetized 
rats were placed in a stereotaxic apparatus (Stoelting 
Co., Chicago, IL). The heads of the rats were positioned 
according to the following coordinates: 0.9 mm posterior 
to bregma, 1.6 mm lateral to the sagittal suture, and 2 
mm ventral to the surface of the brain (Paxinos). Then, 
the rats were recovered for ten days. STZ (3 mg/kg, Tocris 
Bioscience, UK) was dissolved in 0.9% saline (Shahid 
Ghazi Co, Tabriz, Iran) and the ICV microinjection was 

Figure 1. A schematic diagram of the experimental design and 
timeline.

carried out on the first and the third days (Figure 1).30,39-41

Both young and old rats were randomly divided into six 
groups (n= 10 per group): two control (young and aged 
groups), two AD models (young and aged groups), and 
two AD+ tadalafil (young and aged groups) groups. The 
Control group received 10 μL of saline via ICV injection 
during operation, followed by receiving sa line; AD groups 
received STZ via ICV injection during operation followed 
by saline; AD+tadalafil group received STZ via ICV 
injection during operation followed by tadalafil (Figure 
1). Tadalafil was freshly prepared each day in physiological 
saline to reach a volume of 1 mg/kg. Tadalafil or saline was 
orally given by gavage for 40 consecutive days.

Novel object recognition (NOR) test
The apparatus and procedure were similar to those 
utilized in our previous studies.42,43 The apparatus consists 
of a wooden open box (48 cm × 41.5 cm × 36 cm) and 
a video recording system. The habituation and acquisition 
phases were done on the first day. The rats were given two 
habituation sessions (5 min) in the arena with an interval of 
30 min without any object. The training was conducted 30 
min after habituation. During train ing phase, the wooden 
open box included two identical metal cubies (height: ~ 8.5 
cm,  width: 3.5 cm, length: 7 cm).  
The retention test was performed 24 h later, in which 
a novel (unfamiliar) object (~ 6.5 cm in height × 5.5 cm 
in width × 4 cm in length) was replaced with one of the 
objects. Animal behaviors were recorded using a video 
camera, and the time spent near each object was measured 
for 10 min. The object exploration process was de fined as 
sniffing or placing the nose within 1 cm of the object and 
orienting the nose towards the object. The discrimination 
index was defined as time spent in exploring the novel 
object, divided by the total exploration time.44,45 After each 
session, the box and objects were cleaned with wet tissue 
paper (10% ethanol solution) to eliminate the remaining 
odors.

Passive avoidance learning (PAL) apparatus
The apparatus was similar to that we used in previous 
studies.44,46 Briefly, the passive avoidance apparatus is made 
of transparent plastic. A rectangular opening guillotine 
door (6 cm× 8 cm) separated a light chamber (20 cm× 20 
cm× 30 cm) from a dark chamber (20 cm× 20 cm×30 cm). 



Tadalafil Modulates ICV-STZ Memory Impairment

  Pharmaceutical Sciences, 2021, 27(4), 511-520  | 513

The floor of the dark chamber consisted of stainless steel 
rods (3 mm diameter) spaced 1 cm apart. The electrified 
floor of the dark chamber was linked to a shock generator.

Training
The groups were subjected to two trials to habituate to the 
apparatus. The rats were placed in the light compartment of 
the apparatus facing away from the door, and 15 s later, the 
guillotine door was raised. Rats have a natural preference 
for the dark environment. Once the rats entered the dark 
compartment, the door was closed. The rats were kept in 
the dark compartment for 30 s and returned to their home 
cages. After 30 min, the habituation trial was repeated 
using the same protocol. After 30 min, the acquisition 
trial was carried out. When the animals were placed with 
all their four paws in the dark compartment, the step-
through latency to enter the dark compartment during 
acquisition (STLa) was measured. Then, a mild electrical 
shock was applied (0.2 mA) for 0.5 s. After 30 s, the rats 
were returned to their home cage and after 2 min, the 
procedure was repeated. Once the rats placed all four paws 
in the dark compartment, they received a foot shock. The 
training was terminated once the rats remained in the light 
compartment for 120 consecutive seconds. The number of 
trials to achieve acquisition was recorded.

Retention test
The retention test was performed 24 h after PAL acquisition 
trials. The rats were placed in the light compartment 
(similar to training) and 5 s later, the guillotine door was 
raised. The step-through latency during retention (STLr) 
and the time spent in the dark compartment (TDC) were 
recorded for up to 300 s. The retention test was terminated 
once the rats did not enter the dark chamber during 300 s, 
and STLr and TDC values were recorded up to 0 s and 300 
s, respectively.45

Morris Water Maze (MWM)
The spatial memory was evaluated using the Morris water 
maze (MWM) test.47 The apparatus comprised a black 
circular pool (180 cm in diameter, 60 cm in height), filled 
to a depth of 25 cm with water (22 ± 1 °C), and it was placed 
in a soundproof and dimly lighted room. The room offered 
several visual cues to aid the formation of the spatial map 
for escape learning.48

The pool had four quadrants with four starting lines: 
north, east, south, and west, and an invisible  platform 
(10  cm in diameter) centrally located 1  cm beneath the 
water in the north quadrant. Animal training lasted for 
5 days at nearly the same time, and each animal completed 
two blocks of four trials each day (90 s). An interval of 30 s 
was considered between two trials, and the resting time 
of 5  min was regarded between two consecutive blocks. 
Each trial was started by placing the rat facing the wall of 
the maze in one of four designated locations. The rat was 
allowed to explore the maze and the time spent to find the 
hidden platform was defined as the escape latency time 

within 60 s. The escape latency was recorded by a video 
camera connected directly to a computer. One day after 
the spatial acquisition phase (on day 6), in the retention 
phase, a probe trial was done. The platform was removed 
from the pool and the rat was allowed to swim. The time 
spent in the target quadrant and the swimming speed were 
recorded for 60 s.

Statistical analysis
Data were analyzed using SPSS 13.0 software and one-
way analysis of variance (ANOVA) and Tukey’s post-hoc 
test. Statistical significance was set at P < 0.05. Data are 
presented as mean ± SEM.

Results
NOR test
Figure 2A exhibits the discrimination index of the young 
rats in the NOR test. There were significant differences 
in the discrimination index between all young groups 
(p < 0.001). The discrimination index of the AD rats 
was significantly lower than that of the control rats (p < 
0.01). The discrimination index of AD+ tadalafil rats was 
significantly higher than that of rats in the AD group (p 
< 0.01). There were no significant differences between the 
discrimination index of the control and the AD+ tadalafil 
groups. 
Figure 2B shows the discrimination index of the aged rats. 
There was a significant difference in the discrimination 
index between the control (72.97±1.18), AD (62.30±2.96), 
and AD+tadalafil (70.42±2.95) groups (p < 0.01). The 
discrimination index of the AD rats was significantly lower 
than that of the control rats (p < 0.01). The discrimination 
index of AD+ tadalafil rats was significantly higher than 
that of the rats in the AD group (p < 0.01).

PAL test
No significant difference was found in STLa in the first 
acquisition trial between the experimental groups of 
young rats (p >0.98) (data not shown). Figure 3A shows 
significant differences in the number of trials to acquisition 
among the experimental groups (p < 0.05). The number of 
trials of the AD group was significantly higher than that 
of the AD groups (p < 0.05). There was not a significant 
difference between the control and AD+ tadalafil groups. 
There was a significant difference in the STLr between the 
groups (p < 0.001; Figure 3B). According to the results of 
Tukey’s post-hoc test, the AD group had lower STLr than 
the control group (p < 0.001). Also, the control group 
showed a higher STLr than the AD+ tadalafil group (p < 
0.001). The AD+ tadalafil group was found with a longer 
STLr (63.6±27.86); however, there was not a significant 
difference between tadalafil-treated rats and AD groups 
(20.3±1.90). 
In addition, there was a significant difference in TDC 
among the young groups (p < 0.001, Figure 3C). AD rats 
spent more time in the dark compartment compared with 
the control group (p < 0.01). AD+ tadalafil rats spent more 
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Figure 2. Effect of chronic treatment with Tadalafil on the young 
(A), and old (B) rats in the discrimination.
index in the novel object recognition test. ** p < 0.01 in compared 
with the control group; ## p < 0.01 in compared with the AD group 
(n = 10, in each group). Each column represents the mean ±SEM.

time in the dark compartment than the control group (p < 
0.01). There was no significant difference between AD and 
AD+ tadalafil groups (Figure 2C).
No signifi cant difference was found in the STLa among 
old experimental groups (p =0.135; data not shown). In 
addition, there was no significant difference in the number 
of trials to acquisition among the old groups (p =0.06; 
Figure 4A). 
There was a significant difference in the STLr among 
old groups (p < 0.05; 4B). STLr in the AD groups was 
significantly shorter than the control groups (p < 0.01). 
There was no significant difference in the STLr between 
the control and AD+ tadalafil groups.
A significant difference was found in TDC among old 
experimental groups (p < 0.01; Figure 4C). The TDC of the 
AD groups was significantly longer than the control rats (p 
< 0.01). The control groups showed a longer TDC than the 
AD+ tadalafil groups (p < 0.05). There was no significant 
difference between the control and AD+ tadalafil groups.
 
MWM test
There was a significant difference in the latency and distance 
traveled in the retention trials among young groups (Figure 
5). AD groups spent more time to find the hidden platform 

Figure 3. Effect of chronic treatment with Tadalafil among 
the young groups on the number of trials to acquisition in the 
acquisition trial (A), step-through latency (B), and the time spent 
in the dark compartment (C) in the retention phase of passive 
avoidance learning task. ** p < 0.01, and * p < 0.05 in compared 
with the control group; ## p < 0.01 in compared with the AD group 
(n = 10, in each group). Each column represents the mean ±SEM.

compared with the control and AD+ tadalafil groups (p 
< 0.01 and p < 0.05 respectively, Figure 5A). In addition, 
AD groups traveled a longer distance to find the hidden 
platform compared with the control and AD+ tadalafil 
groups (p < 0.001 and p < 0.001, respectively, Figure 5B).
There was a significant difference between the old 
experimental groups in the escape latency time (Figure 6A) 
and distance traveled in training days (Figure 6B). Old AD 
rats were found with more time spent and longer distance 
traveled to find the hidden platform compared with the 
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Figure 4. Effect of chronic treatment with Tadalafil among the old 
groups on the number of trials to acquisition in the acquisition (A), 
step-through latency (B), and the time spent in the dark compart-
ment (C) in the retention phase of passive avoidance learning 
task. ** p < 0.01 and * p < 0.05 in compared with the control group; 
# p < 0.05 in compared with the AD group (n = 10, in each group). 
Each column represents the mean ±SEM.

Figure 5. Effect of chronic treatment with Tadalafil among the 
young groups in escape latency (A) and distance traveled (B) to 
find a hidden platform in the Morris Water Maze during retention 
day. *** p <0.001, ** p < 0.01, and * (p < 0.05) in compared with 
the control group. ### p < 0.001 and ## p < 0.01 in compared with 
the AD+ Tadalafil group; !! p < 0.01 and ! p < 0.05 in compared with 
the first day; and ++ (p < 0.01) in compared with the second day 
(n = 10, in each group). Each column represents the mean±SEM.

control groups (p < 0.001 and p < 0.01, respectively). 
The mean distance traveled and escape latency showed 
an increase in the AD+ tadalafil groups than the control 
groups (p < 0.001 and p < 0.01, respectively). There was no 
significant difference between the AD+ tadalafil and AD 
groups in escape latency and distance traveled. 
There was not a significant difference between young rats 
regarding time spent in the target quadrant to find the 
detectable  platform in the visible test (P =0.5012; data 
not shown). A significant difference was observed in the 
time spent in the target quadrant in the probe test between 
young rats (Figure 7A). AD groups compared with the 
control groups spent less time in the target quadrant (p 
<0.001). AD+ tadalafil rats spent more time in the target 

quadrant than the AD groups (p < 0.001). 
No significant difference was observed between old rats in 
the escape latency to find the observable platform in the 
visible test (P = 0.3307; data not shown). The time spent 
in the target quadrant significantly decreased in the AD 
young compared with the control and AD+ tadalafil young 
groups (p < 0.001; Figure 7B). Old rats were found with a 
significant difference in time spent in the target quadrant 
in the probe test (P < 0.001; Figure 7B). The time spent in 
the target quadrant significantly decreased in the AD and 
AD+ tadalafil groups compared with the control groups (p 
< 0.001; Figure 7B). There were no significant differences 
in the time spent in the target quadrant between the AD 
and AD+ tadalafil groups

Discussion  
According to the main finding of the present study, the 
–STZ (ICV) injection impaired cognition and caused a 
decrease in learning and memory in both old and young 
rats. Treatment with tadalafil for 40 consecutive days 
improved the memory deficiency resulted from the STZ 
(ICV) administration in young rats. In addition, tadalafil 
ameliorated the deteriorative effects of STZ (ICV) on the 
recognition, learning, and memory in young rats after 40 
days of treatment.
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Figure 6. Effect of chronic treatment with Tadalafil among the old 
groups in escape latency (A) and distance traveled (B) to find a 
hidden platform in the Morris Water Maze during retention day. **(p 
< 0.01) in compared with the control group; !! p < 0.01 and ! p < 
0.05 in compared with the first day; and ++ p <0.01 and + p < 0.05 
in compared with the second day (n = 10, in each group). Each 
column represents the mean ±SEM.

Figure 7. Effect of chronic treatment with Tadalafil in the probe 
test in the Morris Water Maze test among the young (A), or old (B) 
groups. *** p < 0.001) in compared with the control group; and ### 
p < 0.001 in compared with the AD (n = 10, in each group). Each 
column represents the mean ±SEM.

The rats subjected to STZ (ICV) administration exhibited 
a decline in cognition, learning, and memory. Our results 
are consistent with other data reporting  STZ (ICV)-
induced memory deficits.44 In the MWM test, –STZ 
(ICV)-treated rats were unable to memorize the platform 
location. This observation indicates the inability of rats 
receiving ICV administration of STZ, particularly aged 
animals to remember spatial information, a characteristic 
of cognitive failure due to hippocampal impairment.49 
The microinjection of STZ, at a sub-diabetogenic dose, in 
rodents leads to prolonged impairment of brain insulin 
resistance, glucose uptake, and metabolism.28,29,50,51 STZ 
causes damage to the cholinergic system30,52 and nucleotide 
signaling.53 This impairment caused the learning and 
memory dysfunctions,40,54,55 aggregation of Aβ peptides, 
tau hyperphosphorylation, and neuroinflammation.8 
A reduction in cognition found in STZ (ICV)-treated 
young and aged AD rats is correlated with the neuronal 
loss in the sporadic form of AD.56 However, in the present 
study, we only considered behavioral study and the 
immunohistological and biochemical study is necessary 
for better understanding. 
Tadalafil belongs to the PDE-5 inhibitors, and crosses the 

blood-brain barrier, and reverses cognitive dysfunction 
in mice.57 It promotes an increase in cGMP in cortical 
and hippocampal neurons and enhances working 
memory in gerbils58 in both young and aged mice.34 PDE5 
inhibitors antagonize age-associated memory deficits, 
such as dementia.59 Sildenafil, the PDE5 inhibitor, can 
reverse cognitive impairments in mouse models,60-62 and 
inhibit scopolamine-induced cognitive impairments in 
the T-maze test in rats.63 Tadalafil has been used for the 
treatment of nervous system diseases. It improves memory 
in aged animals.34 Administration of tadalafil for ten 
weeks improved the cognitive function in the MWM test 
in J20 mice,57 which was possibly due to a decrease in the 
phosphorylation of Tau proteins in the hippocampus.57 
The learning and memory impairment is more severe in 
old rats compared with young ones. Aging is associated 
with a considerable decline in performance in many 
memory tasks.3,5,64 It has been shown that the aged rats 
have spatial memory deficits than young rats.65 A reduction 
in information processing is associated with difficulties in 
retention.66 Old animals utilized non-spatial strategies to 
solve the maze than young animals.67 Aged STZ (ICV)-
treated rats were found with more difficultly in MWM, 
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which may be due to a decrease in the speed of processing 
spatial information.68

We also found that tadalafil was more effective in young 
rats than aged rats in MWM. Aging is also associated 
with a reduction in cGMP levels in the hippocampus 
and an increase in PDE activity.69,70 Cyclic nucleotides are 
intracellular signaling molecules and are catalyzed by PDEs 
via hydrolysis.71 Decreased levels of cGMP in cerebrospinal 
fluid are associated with cognitive decline and amyloid-
beta pathology in neurodegenerative diseases.15 On the 
other hand, AD is associated with increased neuronal 
expression of PDE5 mRNA.13,15,24 PDE5 enzyme levels 
are increased in the hippocampus of STZ rats.72 PDE-5 
inhibitors induce vasodilation through cGMP, increased 
blood flow, glucose metabolism, and ultimately improving 
memory.34 Protein kinase G activity is also decreased in 
aged rat brains consistent with a reduction in cGMP levels.73 
PDE5 inhibitors reverse age-related deficits in cAMP-
response element-binding protein, which is crucial for 
synaptic plasticity and memory.59,74 Daily administration 
of PDE5 inhibitors, such as tadalafil can control the cGMP 
homeostasis via hydrolysis of cGMP.75 The increased 
cGMP level in the brain might be responsible for memory 
enhancement in STZ (ICV)-treated rats. 

Conclusion
Chronic treatment with tadalafil reverses dementia 
symptoms in–STZ (ICV)-treated aged rats. However, it 
did not improve learning in aged rats.  Inhibition of PDE5 
is beneficial to treat age-related memory dysfunction 
in a sporadic AD model in aging. It is suggested that 
pretreatment with tadalafil can improve memory 
impairment in aged AD rats. 
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