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ABSTRACT 
 

Background: The transient receptor potential melastatin 8 (TRPM8) channel is a cold-sensing 
non-selective cation channel involved in cellular proliferation and signaling, yet its role in diabetic 
nephropathy (DN) remains poorly characterized. The TRPM8 agonist, geraniol (GE) is a dietary 
acyclic monoterpene alcohol known for its anti-oxidant, hypoglycemic and renal chemoprotective 
potentials. This study aims at defining the role of TRPM8 via the use of its agonist GE in an animal 
model of diabetic nephropathy. 
Methods: A total of 80 male Wistar rats were equally divided into 4 equal groups: control, GE 
sham, diabetic rats received a single intraperitoneal injection of streptozotocin (STZ) (65 mg/kg) 
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and STZ+GE diabetic rats received GE orally at a dose of (100 mg/kg/day). Indices of DNA 
damage, 8- Hydroxyguanosine (8-OHdG), nephrotoxicity and metabolic derangement parameters 
were measured eight weeks after diabetes induction. Real-time PCR was performed to detect 
mRNA expression levels of renal TRPM8 and podocyte marker. Renal histopathological and 
ultrastructural changes were recorded. Western blotting and immunohistochemistry were 
performed to determine TRPM8 protein expression. 
Results: Diabetic rats displayed downregulation of TRPM8 mRNA and protein expression levels in 
renal tissues. Upon administration of GE, biochemical, ultrastructural and oxidative stress findings 
were significantly improved in treated diabetic animals compared to control groups and coincided 
with upregulation of renal TRPM8 expression as well as enhancement of podocytopathy.  
Conclusion: The present study revealed that the ameliorative effect of GE in DN is TRPM8 
mediated and highlights a mechanistic role of TRPM8 and its agonists in management of diabetic 
renal complications. 
 

 
Keywords: Geraniol; streptozotocin; TRPM8; oxidative stress; diabetic nephropathy. 
 
ABBREVIATIONS 
 
STZ :   Streptozotocin 
DN :   Diabetic Nephropathy 
TRPM8 : Transient Receptor Potential  

Melastatin 8 
VEGF :   Vascular Endothelial Growth Factor 
ESRD :   End Stage Renal Disease 
8-OHdG :   8- Hydroxyguanosine  

 
1. INTRODUCTION 
 
Diabetic nephropathy (DN) is considered one of 
the most common and serious complication of 
diabetes and a major cause of end-stage renal 
disease (ESRD) [1]. DN is recognized as one of 
the major podocyte-associated diseases [2]. Its 
hallmarks comprise glomerular hypertrophy, 
glomerular basement membrane (GBM) 
thickening and eventually proteinuria [3]. 
Intracellular calcium signaling plays a robust 
pathogenic mechanisms in podocytopathy and 
DN [4]. Vascular endothelial growth factor 
(VEGF) is mainly secreted by podocytes and 
endothelial cells and is considered as a 
fundamental regulator of normal and abnormal 
angiogenesis [5]. Various VEGF signaling 
pathways have critical effects on podocyte 
physiology and integrity of its cytoskeleton [6]. 
The transient receptor potential melastatin 8 
(TRPM8) is a cold-sensing non-selective calcium 
permeable cation channel that plays a pivotal 
role in regulating the cell cycle and Ca2+ 
signalling [7]. Evidence from other systems, 
however, has shown that TRPM8 channels are 
also localized to intracellular compartments, 
where they may act as calcium release channels 
[8]. TRPM8 is expressed in a subset of normal 
tissues including urinary bladder, urogenital tract 
and temperature-sensing neurons. Moreover, 

TRPM8 is overexpressed in a variety of tumors 
particularly prostate and pancreatic ones and is 
considered crucial for cell cycle progression [9]. 
Some TRP channels are expressed in kidney 
and are involved in various types of 
nephropathies [10]. TRPM6, (TRPM family 
member) which is localized to the apical 
membrane of distal tubules has been reported to 
be downregulated in experimental diabetic 
nephropathy [11]. TRPM8 role has been well 
characterized in the context of neuropathy, where 
spatiotemporal plasma membrane dynamics of 
TRPM8 control the electrical activity of cold 
sensitive neurons [12]. However, a role for 
TRPM8 in diabetic nephropathy has yet to be 
clarified [13]. TRPM8 knockout mice have 
increased rates of insulin clearance and 
degradation compared to wild type ones, 
revealing a novel role of TRPM8 as a regulator of 
insulin homeostasis [13]. Additionally, TRPM8 is 
expressed in brown adipose tissue and its 
activation can prevent obesity [14]. 
  
Different plant-derived natural products with 
variable potencies have been identified as 
TRPM8 agonists, including menthol, eugenol, 
neferine, eucalyptol and geraniol [15]. Geraniol 
(GE) (trans-3,7-Dimethyl-2,6-octadien-1-ol) is an 
acyclic monoterpene alcohol normally isolated 
from Cymbopogon flexuosus and also presents 
in essential oils of various herbs and food 
additives [16]. Geraniol is as a TRPM8 agonist 
with structural similarity to menthol in a dose 
relevant and cell type specific manner [17,18]. 
Geraniol has been reported to have a plethora of 
therapeutic potentials as an antioxidant, 
hypoglycemic, hypolipidemic, anti-inflammatory, 
antiproliferative and antiangiogeneic [19,20]. 
Geraniol has been implicated to control multiple 
signaling pathways that are involved in diverse 
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biological processes, such as cellular 
proliferation, apoptosis, autophagy and 
metabolism [21]. 
 
However, its role in alleviating diabetic 
nephropathy has been reported in terms of 
hypoglycemic and antioxidant potentials [22]. 
TRPM8 expression has been well characterized 
in the context of diabetic neuropathy, [12]. 
Nonetheless, a role for TRPM8 in DN has yet to 
be elucidated. Therefore, it is intriguing to 
investigate the potential role of TRPM8 in an 
animal model of diabetic nephropathy before and 
after administration of its agonist geraniol. 
 
2. MATERIALS AND METHODS 
 
2.1 Chemicals 
 
Streptozotocin (STZ) (PubChem CID: 29327), 
Geraniol (GE) 98% purity (PubChem CID: 
637566) and all other chemicals and reagents, 
unless otherwise stated, were purchased from 
Sigma-Aldrich (St. Louis, MO, USA) and were of 
high analytical grade. 
 
2.2 Animals 
 
Adult male Wistar rats weighing approximately 
160- 180 g were obtained by the Faculty of 
Medicine Tanta University and acclimatized 
under laboratory conditions for 1 week prior to 
experiments. Rats were housed in polyplastic 
cages with steel wire tops and maintained under 
standard conditions of temperature (23±2°C) and 
humidity (50±10%) with (12/12 h light/dark cycle) 
and allowed access to commercial rodent chow 
and tap water ad-libitum.  
 
All animal protocols were approved by the Ethical 
Committee of Faculty of Medicine, Tanta 
University, Egypt with the number 31210/11/16. 
  
2.3 Experimental Design 
 
Animals were allocated into 4 equal groups (n= 
20); group I (normal control group) rats received 
neither STZ nor GE, only vehicles; group II (GE 
treated sham group) rats received only GE by 
oral gavage at a dose of (100 mg/kg body 
weight/day) in vegetable oil (where GE was 
dissolved in corn oil at a dose of 2.5 ml/kg body 
weight/day); group III (STZ-induced diabetic 
Group) overnight fasted rats received a single 
dose of streptozotocin (STZ), 65 mg/kg body 
weight, intraperitonally) in 0.1 M cold citrate 

buffer (pH 4.5); group 4 (GE treated diabetic 
group abbreviated as STZ+GE) rats received GE 
orally at a dose of (100 mg/kg body weight/day) 
in vegetable oil for 8 weeks starting from the 4th 
day after STZ injection. After 3 days of induction, 
rats with marked hyperglycemia (fasting blood 
glucose >250 mg/dl) were selected as                    
diabetic group that was left for 8 weeks untreated 
to induce early diabetic nephropathy. Other 
groups were injected with equivalent amounts of 
citrate buffer as a vehicle. Blood glucose                 
levels were monitored every other day from the 
tail vein. 
 
At the end of the experimental period, animals 
were placed in individual metabolic cages for 24h 
to collect urine samples that were purged of air 
and stored at ˗80°C.  
 
After an overnight fast, all animals were    
weighted, and sacrificed. Plasma/serum samples 
were obtained by centrifugation at 3000 g for 10 
min, aliquoted and stored at ˗80°C for                    
further assays. Tissues were weighted, snap 
frozen in liquid nitrogen and stored at ˗80°C till 
analysis.  
 
For microscopy, tissues were fixed in 10% 
neutral-buffered formalin, 2.5% gluteraldehyde 
and/or 4% paraformaldehyde (PFA).  
 
2.4 RNA Extraction, cDNA Synthesis and 

Real Time PCR 
 
Total RNA was extracted from renal tissues using 
Isogene (Nippon Gene, Toyama, Japan) 
according to manufacturer’s instructions. RNA 
was stored at -80°C until use. 5 µg of total RNA 
was subjected to first strand cDNA synthesis in 
using the random hexamers and M-MuLV 
reverse transcriptase of Viva 2-Steps RT-PCR kit 
(#RTPL12, Vivantis, USA) according to 
manufacturer’s instructions. The resulting cDNA 
was amplified using Power SYBR® Green PCR 
Master Mix (Life Technologies, Carlsbad, CA, 
USA) and sequence specific primers for TRPM8 
and VEGF-A. PCR condition was set as follows: 
a single cycle of DNA polymerase activation for a 
10 min hold at 95°C followed by 40 cycles of 
95°C for 15 s and 60°C for 1 min for annealing 
and 60°C for 1 min for extension, followed by a 
melting curve analysis to confirm the amplicon 
specificity. Real-time PCR assays were run on a 
Rotor-Gene Q 6plex machine (Qiagen, Valencia, 
CA, USA). Relative gene expression was 
calculated by the Rotor-Gene Q series software 
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2.0.3 (Qiagen, Valencia, CA, USA) using the 
comparative threshold (Ct) method [23] 
normalized against the housekeeping gene 
GAPDH that was used as endogenous control in 
all experiments.  
 
Sequences of primers used for Real time-PCR 
are detailed in (Table 1). Sequence specific 
primers were designed by Primer3 software [24]. 
 
2.5 Biochemical Assays 
 
Enzyme linked immunosorbent assay (ELISA) 
was used to detect plasma Insulin levels by 
RayBio® Rat Insulin ELISA Kit (Ray RayBiotech, 
Inc., Norcross, GA). Fasting Blood Sugar (FBS) 
was measured by the oxidase method 
(Biodiagnostic, Egypt), total lipid profile including 
total cholesterol (TC), triglycerides (TG) and 
HDL-cholesterol (HDL-Ch) were measured by 
enzymatic-colorimetric methods (Biodiagnostic, 
Egypt). LDL cholesterol (LDL-Ch) concentration 
was calculated according to Friedewald equation 
[25].  
 
Urinary albumin, plasma protein, blood urea 
nitrogen (BUN), uric acid and creatinine were 
estimated using commercial kits (HUMAN 
Diagnostics, Wiesbaden, Germany) according to 
supplier’s instructions.  
 
2.6 Pro-oxidant/ Antioxidant Status 

Assessment 
 
For determination of 8-OHdG (8-
Hydroxyguanosine), urine samples were 
centrifuged at 2,000 g for 20 min, and the 
supernatant was used for the by a standard 
sandwich ELISA kit (Chongqing Biospes Co., Ltd, 
Chongqing, China) according to supplier’s 
instructions. Levels of Malondialdehyde (MDA) 
and superoxide dismutase (SOD) enzyme 
activity in renal tissues were assayed by 
available commercial kits (Biodiagnostic, Egypt).  
 

2.7 Antibodies, Homogenization and 
Western Blotting 

 
Antibodies used in this study were as follow: anti-
TRPM8 (#KM060, TransGenic Inc., Kobe, Japan), 
anti-TRPM8 (#ab109308, Abcam, Cambridge, 
UK), and anti- β actin (#8226; Abcam). Total 
protein extracts were prepared by 
homogenization of tissues into a lysis buffer 
containing (50 mM Tris-HCl pH7.6, 250 mM 
NaCl,1% Triton X-100, 0.5% Triton X100, 3 mM 
EDTA, 3 mM EGTA, 10% glycerol, 2mM DTT, 
1mM PMSF and 1mM sodium orthovanadate), 
supplemented with mini complete protease 
inhibitor cocktail tablet (Roche Diagnostics, 
Mannheim, Germany). Protein concentrations 
were determined by Bradford method [26] with 
bovine serum albumin as a standard. Total 
proteins of 25 µg were used after boiling it with 
Laemmli buffer (4% SDS, 20% glycerol, 120 mM 
Tris [pH 6.8]) at 95°C for 5 min. Proteins were 
separated by 8% sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS-PAGE) 
and transferred onto nitrocellulose membrane 
(GE Healthcare, Piscataway, NJ, USA). Blots 
were blocked with 5% skim milk in 0.1% TBST 
buffer (20 mM Tris HCl [pH 7.5]), 48 mM NaCl, 
0.1% (v/v) Tween 20) for 1 h at room 
temperature prior to incubation with anti-TRPM8 
and anti- β-actin primary antibodies, at a 1:1000; 
1:5000 dilutions in blocking buffer; respectively at 
4°C for an overnight. Following three washes in 
TBST, blots were then incubated with 
horseradish peroxidase-conjugated goat anti-
mouse or anti-rabbit IgG secondary antibodies 
(MBL, Nagoya, Japan; diluted in blocking buffer), 
as appropriate, for 1 h at room temperature. 
Protein bands were developed using 
chemiluminescence (GE Healthcare, Piscataway, 
NJ, USA). Western blot bands were scanned and 
band intensities were identified by densitometric 
analysis using the image analysis software 
package; ImageJ version 1.50i. (NIH, Bethesda, 
MD, USA). 
 

Table 1. Sequences of primers used in the study 
 

Gene Accession 
number 

Nucleotide sequence Amplicon 
(base pairs) 

Rat TRPM8 NM_134371.2 F 5` -GAAGCCCATTGACAAGCACAAG-3` 
R 5`-ACGAAGACCAGGGCATAGAG-3` 

189 

Rat VEGF-A NM_031836.3 F 5`-AGGAAAGGGAAAGGGTCA-3` 
R 5`-ACAAATGCTTTCTCCGCT-3` 

98 

Rat GAPDH NM_017008.4 F 5`-TCAACTACATGGTCTACATGTTCCAG-3` 
R 5`-TCCCATTCTCAGCCTTGACTG-3` 

113 
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2.8 Immunohistochemistry and Electron 
Microscopy  

 
Hematoxylin and Eosin (H&E) and electron 
microscopy (EM) preparation was performed as 
previously described [27].  
 

For TRPM8 staining 4 µm thick sections were 
incubated with anti-TRPM8 antibody at (1:100 
dilution). Peroxidase anti-peroxidase was used 
as a secondary reagent (DakoCytomation, 
Cambridge, UK) and 3,3-diaminobenzidine/ H2O2 

as a substrate. Slides were viewed by (Leica 
Imaging System LTD., Cambridge, UK). 
Immunoreactivity of TRPM8 appeared as brown 
staining of varying degrees of intensity. EM was 
performed by a transmission electron microscope 
(JEOL, Tokyo, Japan). Morphometric analysis 
was carried out to evaluate the foot process 
effacement on 80kV electron micrographs by 
using ImageJ version 1.50i. The width of the foot 
process was calculated according to [28].  
 
Five measurements were taken for each ultrathin 
section of each group. 
 
2.9 Statistical Analysis 
 
Statistical analysis was performed using Graph 
Pad Prism 6.0 software (GraphPad Inc, San 
Diego, California, USA). Results are presented 
as means ± s.e.m (standard error of the mean). 
Multiple comparisons were performed by one-
way analysis of variance (ANOVA) followed by 
the Tukey’s post-hoc test. Nonparametric data 
were analyzed using Kruskal-Wallis test followed 
by Dunn’s post-hoc test. Correlations were 
analyzed using Pearson’s correlation coefficients. 
Statistical significance was considered when the 
P value was ≤ 0.05. 
 
3. RESULTS 
 
3.1 Effects of Geraniol on Body and 

Kidney Weight and Glycemic Indices 
 
Rats injected with STZ developed type 1 
diabetes characterized by the significant increase 
in plasma glucose level and decrease in plasma 
insulin level (Fig. 1 A, B). Diabetic rats 
experienced a significant decrease in body 
weight as well as a significant gain in kidney 
weight (as a marker of diabetic nephropathy) 
(Fig. 1 C, D) when compared to normal rats. 
However, GE supplementation significantly 
decreased plasma glucose levels, improved 

plasma insulin and decreased renal hypertrophy 
(Fig. 1 A-D) strengthening the described 
hypoglycemic effect of GE. 
 
3.2 Effects of GE on STZ-induced 

Nephrotoxicity 
 
STZ-induced diabetic rats exhibited significant 
alterations in nephrotoxicity markers where, 
urinary albumin, plasma uric acid, creatinine and 
plasma BUN showed significant elevation (Fig. 1 
E-H). However, GE treatment efficiently reduced 
those alterations and appeared to act as a 
renoprotective agent in DN. 
  
3.3 Effects of GE on Lipid Profiling and 

DNA Damage Indices  
 
STZ- induced diabetic rats exhibited significant 
dyslipidemia, 8 weeks GE treatment weeks 
significantly restored lipid profiling to near control 
levels (Fig. 2 A-D). In our present study, 
nephrotoxicity was associated with imbalance 
between kidney antioxidant/pro-oxidant status 
with heightened oxidative stress that was evident 
by significant increase in lipid peroxidation 
product MDA, urinary oxidative stress marker 8-
OHdG excretion levels and decrease the 
antioxidant activity of SOD (Fig. 2 E-G). 
Treatment with GE effectively decreased the 
alterations in these oxidative stress related 
parameters revealing GE as a good antioxidant 
tool that protects rat kidney from diabetes-
induced oxidative damage. 
 
3.4 Geraniol protects from STZ-induced 

Renal Injury 
 
Histological examination of H&E stained sections 
from diabetic kidney showed characteristic 
diabetic nephropathy in the form of increased 
glomerular size, lobulation, degenerative 
changes in the proximal tubules, cellular 
infiltration and areas of hemorrhage, (Fig. 3c) 
relative to the preserved renal structures from the 
non-diabetic groups (Fig. 3 a, b). These 
alterations were effectively decreased post 
treatment with GE (Fig. 3d). This observed 
results conferred a protective action of GE in 
diabetic renal injury.  
 
3.5 Analysis of TRPM8 Expression in 

STZ-induced Diabetic Rats 
 
In order to explore that GE observed effects were 
TRPM8 mediated we investigated the expression 
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of TRPM8 mRNA in kidney of diabetic rats at 2 
and 8 weeks intervals. Following 2 weeks of 
STZ- injection, renal TRPM8 mRNA expression 

was downregulated as compared to other 
groups. However, that reduction was not of 
statistical significance (Fig. 4 A).  

 

 
 

Fig. 1. Effects of geraniol on glycemic and nephrotoxic indices of STZ-induced diabetic rats 
Control: normal control; GE: treated with geraniol; STZ: STZ-induced (diabetic); STZ+GE: GE treated post to STZ 
induction (A) plasma glucose, (B) Plasma Insulin (C) body weight, (D) kidney weight, (E) urinary albumin, (F) uric 

acid, (G) creatinine, (H) blood urea nitrogen. Data present mean ± s.e.m., n= 20. ‘‘a’’ indicates significant 
difference between the normal control and STZ-induced groups, ‘‘b’’ indicates the significant difference between 
STZ-induced and GE treated groups and ‘‘c’’ indicates the significant difference between the STZ+GE group and 
normal control group using ANOVA followed by Tukey’s post-hoc test. (P a< 0.0001, P b< 0.0001, P c< 0.0001) 
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Fig. 2. Effects of geraniol on lipid profiling and DNA damage indices of STZ-induced diabetic 
rats 

Control: normal control; GE: treated with geraniol; STZ: STZ-induced (diabetic); STZ+GE: GE treated post to STZ 
induction (A) Cholesterol, (B) Triglycerides, (C) HDL-Cholesterol, (D) LDL-Cholesterol, (E) MDA, (F) urinary 8-
OHdG, (G) SOD. Data present mean ± s.e.m., n= 20. ‘‘a’’ indicates significant difference between the normal 

control and STZ-induced groups, ‘‘b’’ indicates the significant difference between STZ-induced and GE treated 
groups and ‘‘c’’ indicates the significant difference between the STZ+GE group and normal control group using 
ANOVA followed by Tukey’s post-hoc test. (Pa< 0.0001, P b< 0.0001, Pc< 0.05). HDL: high density lipoproteins; 

LDL: low density lipoproteins; MDA: malondialdehyde; 8-OHdG: 8- Hydroxyguanosine; SOD: superoxide 
dismutase  
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Fig. 3. Effects of geraniol on STZ-induced diabetic nephropathy in rats 
Photomicrographs of rat kidney stained with H&E (X100) showing (a) normal control group with normal renal 

architecture (b) GE only treated group with preserved renal architecture, (c) STZ-induced diabetic group showing 
massive cellular infiltration (*), areas of interstitial hemorrhage (H) and lobulated glomeruli (double arrows) (d) GE 

treated diabetic group with improved renal architecture. Black arrows represent normal sized glomeruli 
 
At 8 weeks after diabetes induction there was a 
significant decrease of TRPM8 mRNA 
expression of the kidney relative to the control 
group (Fig. 4B). Meanwhile, GE treatment for 8 
weeks significantly increased the altered renal 
TRPM8 mRNA expression, when compared to 
diabetic rats (Fig. 4B). Additionally, TRPM mRNA 
expression in pancreatic tissues from diabetic 
and non diabetic groups were examined by RT-
PCR, where diabetic animals showed decreased 
pancreatic TRPM8 mRNA expression levels 
when compared to non-diabetic ad treated 
groups (P < 0.0001). Geraniol treatment 
significantly upregulated the pancreatic TRPM8 
expression levels (Fig. 4D). Renal TRPM8 mRNA 

expression correlated negatively with the 
glycemic status and renal VEGF mRNA levels. It 
exhibited significant positive correlations with 
plasma insulin levels and the antioxidant SOD 
enzyme levels (Table 2). We furtherly confirmed 
renal TRPM8 protein expression levels by 
western blotting followed by densitometry, that 
showed significant reduction of TRPM8 levels in 
renal tissues from diabetic rats relative to control 
ones. 
 
TRPM8 protein expression levels were increased 
8 weeks following GE treatment to reach about 
90% of controls (Fig. 5 A, B). 
Immunohistochemistry of kidney sections 
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demonstrated decreased immunoreactivity of 
TRPM8 in sections from diabetic rats relative to 
control ones (Fig. 5 C, a). GE administration for 8 

weeks efficiently increased protein expression of 
TRPM8 with intense immunoreactivity noted at 
both distal and proximal renal tubules (Fig. 5C, b). 

 

 
 

Fig. 4. Effect of geraniol on TRPM8 and VEGF mRNA expression in STZ-induced diabetic rats 
Total RNA was extracted from kidney tissues from; control: normal control; GE: treated with geraniol; STZ: STZ-
induced (diabetic); STZ+GE: GE treated post to STZ induction, followed by real time PCR. Histogram showing 
(A) TRPM8 relative mRNA expression at 2 weeks, $ denotes STZ VS control, P= 0.928 and # denotes STZ VS 

STZ+GE, P= 0.544 (non-significant). (B) TRPM8 relative mRNA expression at 8 weeks (C) VEGF relative mRNA 
expression at 8 weeks. (D) Pancreatic TRPM8 relative mRNA expression at 8 weeks. GAPDH was used as 
internal control. Data present mean ± s.e.m., n= 20. ‘‘a’’ indicates significant difference between the normal 

control and STZ-induced groups, ‘‘b’’ indicates the significant difference between STZ-induced and GE treated 
groups using ANOVA followed by Tukey’s post-hoc test. (P a< 0.0001, P b< 0.0001) 

 
Table 2. Correlation of renal TRPM8 mRNA expression with glycemic, angiogenic and 

antioxidant markers among the studied groups 
 
Variables Control GE STZ STZ+GE 

r p r p r p r p 
Renal VEGF mRNA -0.7313 0.0002* -0.7243 0.0003* -0.7338 0.0002* -0.7113 0.0004* 
Renal SOD 
(U/mg protein) 

0.8319 <0.0001* -0.4614 0.0406* 0.7206 0.0003* 0.7108 0.0004* 

Plasma Insulin 
(µIU/ml) 

0.9027 <0.0001* 0.7083 0.0005* 0.6436 0.0022* 0.7103 0.0004* 

FBG (mg/dL) -0.9266 <0.0001* -0.5247 0.0175* -0.7338 0.0002* -0.7028 0.0005* 
Values are Pearson correlation coefficients. Asterisk ;(*) marks significance at P< 0.05 

FBG: fasting blood glucose; SOD: superoxide dismutase 
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Fig. 5. Decreased TRPM8 protein expression in STZ-induced diabetic rats 

 
(A) Lysates from kidney tissues from control: normal control; STZ: STZ-induced (diabetic); STZ+GE: GE treated 
post to STZ induction; GE: treated with geraniol, were analyzed by western blotting for TRPM8 protein levels; β- 

actin was used as a loading control. (B) Bands from (A) were quantified by densitometry, and expressed as a 
value relative to control (β- actin). Mr; Molecular weight marker in kDA (kilodaltons). Values are presented as 

means± s.e.m., n= 6, ‘‘a’’ indicates significant difference between the normal control and STZ-induced groups, 
‘‘b’’ indicates the significant difference between STZ-induced and GE treated groups using Kruskal-Wallis test 

followed by Dunn's multiple comparisons test. 
(Pa < 0.0001, Pb < 0.0001). (C) Photomicrographs showing immunohistochemistry of rat kidney cortical sections 

of groups as in (A), stained with anti-TRPM8 (brown), counterstained with Hematoxylin (blue), (a) 40X 
magnification (b) High power 100x magnification, showing decreased TRPM8 immunoreactivity at renal tubules 

of diabetic rats, GE treated tubules showing intense TRPM8 immunostaining 
 

3.6 Effects of Geraniol Treatment on 
Angiogenesis and Podocytes in 
Diabetic Rats 

 

Next we assessed, whether GE could mitigate 
the diabetic podocytopathy. Renal vascular 

endothelial growths factor (VEGF), an angiogenic 
and podocyte marker, mRNA expression was 
significantly increased in diabetic rats compared 
to control ones, (Fig. 4C). Ultrastructural studies 
by transmission electron microscopic 
examination of kidney from diabetic animals 
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displayed podocytopathy, effacement, swelling 
and/or fusion of foot processes with narrowing of 
the subpodocytic space (Fig. 6A) as well as 
significant increase of podocyte foot processes 
width (FPW) in nm (Fig. 6B) confirming that 
decreased renal TRPM8 expression was coupled 
with cytoskeletal derangement and 
podocytopathy during DN. Eight weeks of GE 
administration significantly reduced VEGF mRNA 

expression levels to control levels. Meanwhile, at 
the ultrastructural level GE+ STZ treated animals 
revealed restoring of normal structure with 
preserved podocyte morphology and significant 
lowering of foot processes width (FPW) in nm 
(Fig. 6 A, B). Collectively these findings convey 
an effective role of GE in alleviating diabetic 
nephropathy via modifying TRPM8 gene 
expression and remodeling podocytopathy. 

 

 
 

Fig. 6. Effect of geraniol on ultrastructural features of diabetic nephropathy 
(A) Photomicrographs of kidney samples from the four experimental groups were examined under transmission 

electron microscope as indicated. Upper panel; X1000 magnification (scale bar 2 µm), lower panel; X6000 
magnification (scale bar 5 µm). STZ group revealed part of Malpighian corpuscle with many blood capillaries (BC) 

with their covering podocytes. Narrowing and obliteration of subpodocytic (*) space can be seen with focal 
thickening of the glomerular basement membrane and fusion, effacement and swelling of foot processes (double 
arrow). Other non-diabetic and treated groups displayed fenestrated blood capillary with its basement membrane 
of normal thickness covered by regularly spaced foot processes of podocytes (arrow). (B) Quantification of foot 

process width (FPW) from all indicated groups in (A), data present mean ± s.e.m., (n= 5). ‘‘a’’ indicates significant 
difference between the normal control and STZ-induced groups, ‘‘b’’ indicates the significant difference between 
STZ-induced and GE treated groups using ANOVA followed by Tukey’s post-hoc test. (P a< 0.0001, P b< 0.0001) 
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4. DISCUSSION 
 
The molecular mechanism (s) underlying the 
development of DN is complex and remains ill 
defined that accounts for the ineffectiveness of 
currently available interventions [29]. Although 
geraniol has been reported to ameliorate 
hyperglycemia, dyslipidemia and oxidative stress 
in rodent models of T1DM and metabolic 
syndrome [22,30], its effect on DN and the 
underlying mechanisms remained largely 
uncharacterized.  
 
The present study provides novel evidence on 
the renoprotective potential of geraniol via 
modulation of TRPM8 expression as 
documented by improvement of DN biochemical 
markers and restoring of normal renal 
architecture. Furthermore, GE mitigates diabetic 
podocytopathy via downregulation of VEGF and 
alleviation of the observed heightened oxidative 
stress. Persistent hyperglycemia drives reactive 
oxygen species (ROS) generation which is 
considered as one of the dominant mechanisms 
driving DN development [31]. Several studies 
have illustrated the increased lipid peroxidation in 
clinical and experimental diabetes [22]. This is in 
agreement with current results that showed 
increased levels of lipid peroxidation product 
(MDA), urinary 8-OHdG, as well as decreased 
SOD activity at diabetic kidney. GE treatment 
effectively improved glycemic status and insulin 
levels as well as reduced oxidative stress indices 
and restored renal SOD antioxidant activity which 
is attributed to its potent hypoglycemic, 
renoprotective and antioxidant effect. These 
findings are coincident with previous reports [22, 
32]. It is of note that GE dose used in the present 
study (100 mg/kg BW) was efficient to induce 
antioxidant effects, where a prior report had 
implicated a pro-oxidant potential of GE at higher 
doses [16]. TRPM8 channel is a cation selective 
one, with special preference for calcium ions 
[33]. Although the expression of TRPM8 in many 
tissues has been reported, to the best of our 
knowledge, this study is the first to report a role 
of TRPM8 expression in DN. The results of the 
present study demonstrated TRPM8 mRNA and 
protein levels to be downregulated in renal 
tissues of diabetic rats as compared to controls, 
8 weeks following T1DM induction. This is in line 
with a recent study describing that the reactive 
metabolite methylglyoxal, a byproduct of 
glycolysis that is increased in the plasma of 
diabetic patients, inhibits the activity and reduces 
mRNA expression of TRPM8 in dorsal root 
ganglion cells [34].  

The mRNA and protein expression of renal 
TRPM8 was up-regulated after GE administration 
in diabetic treated animals. Renal TRPM8 mRNA 
expression positively correlated with the renal 
antioxidant enzyme SOD. Interestingly, the 
observed herein oxidative stress did not elicit 
increased TRPM8 expression in diabetic animals. 
Consequently, cells treated with H2O2 failed to 
increase TRPM8 activity [35]. In disagreement 
with our current findings, Nocchi et al. [36] stated 
that H2O2 treatment upregulates TRPM8 
expression in aged mouse urothelium. This 
discrepancy may be tissue specific due to 
different redox potentials in aging animals. 
Similarly, increased TRPM8 expression was 
detected at dorsal root ganglion as well as in 
bladder tissues from diabetic animals [37,38]. On 
the other hand Facer et al. [39] did not find any 
change in TRPM8 expression in skin from 
diabetic patients; indicating that TRPM8 
expression is tissue and cell specific. It is of note 
that in these contradictory studies TRPM8 
expression was not assessed beyond 2 weeks of 
diabetic induction. In the current study we also 
could not retrieve a significant downregulation of 
TRPM8 expression at 2 weeks. Only 8 weeks 
post-induction and establishment of DN, TRPM8 
expression displayed a significant reduction 
when compared to other studied groups. 
Therefore, it is seemingly that renal TRPM8 
downregulation is linked to the pathogenesis and 
structural changes of DN.  
 
In addition, our TRPM8 immunostaining results 
revealed maximum intensity at distal and 
proximal tubules, inferring a structural and 
functional role of TRPM8 in normal kidney. The 
ultrastructural findings of the current study 
detected characteristic diabetic podocyte 
dysfunction as previously stated [40]. VEGF has 
been known to be involved in podocytopathy of 
DN due to high glucose levels, oxidative stress, 
dysregulation of podocyte signaling and 
cytoskeletal remodeling [2,41]. The present study 
and other ones have detected upregulation of 
renal VEGF mRNA expression in diabetic rats as 
compared to control groups [42,5]. On the other 
hand GE treated diabetic rats showed decreased 
mRNA expression of VEGF, decreased FPW and 
alleviation of podocytopathy. In agreement with 
present data, Carnesecchi et al. [43] and others 
[44] have reported the ability of dietary 
monoterpenes to inhibit angiogenesis in animal 
models and cancer cell lines through apoptosis 
induction and increasing the expression of the 
pro-apoptotic proteins. In the present study 
TRPM8 mRNA levels exhibited a statistically 



significant negative correlation with VEGF mRNA 
levels in kidneys of the studied groups.
line with Zhu et al. [45] who described a 
downregulation of VEGF in prostate cancer cells 
in response to TRPM8 overexpression. 
Therefore, one can speculate a disturbed 
TRPM8/VEGF signaling in DN particularly at 
podocytes. The current proposed mechanism of 
GE clarifies the role of TRPM8 in normal renal 
physiology that is downregulated by 
hyperglycemia in DN. Mechanistically GE 
observed action herein is multifactorial, first by, 
activation of TRPM8 receptors that in turn can 
regulate their function by modulating their
expression at the plasma membrane via rapid 
vesicular translocation and fusion [15]
at the renal and pancreatic tissues that can 
modulate hypoglycemic effects, controlling 
insulin homeostasis and renal structural integrity. 
Whether TRPM8 itself can modify other genes in 
renal transcriptome requires further studies. 
Second, GE acts through direct transcriptional 
activation and decrease of DNA synthesis, which 
 

Fig. 7. Proposed model o
Under normal condition there is restriction of growth factor signaling. Hyperglycemia, ROS, inflammation, VEGF 

activation and podocytopathy lead to 
TRPM8 expression that in turn increases its own expression as we
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significant negative correlation with VEGF mRNA 
levels in kidneys of the studied groups. This is in 

who described a 
downregulation of VEGF in prostate cancer cells 
in response to TRPM8 overexpression. 
Therefore, one can speculate a disturbed 
TRPM8/VEGF signaling in DN particularly at 

The current proposed mechanism of 
GE clarifies the role of TRPM8 in normal renal 
physiology that is downregulated by 
hyperglycemia in DN. Mechanistically GE 
observed action herein is multifactorial, first by, 

TRPM8 receptors that in turn can 
regulate their function by modulating their own 
expression at the plasma membrane via rapid 

[15] particularly, 
at the renal and pancreatic tissues that can 
modulate hypoglycemic effects, controlling 
insulin homeostasis and renal structural integrity. 
Whether TRPM8 itself can modify other genes in 

ptome requires further studies. 
Second, GE acts through direct transcriptional 

decrease of DNA synthesis, which 

influences S phase progression of the cell cycle, 
thus decreasing renal cell proliferation 
Meanwhile, GE can produce evident changes in 
the resting potential and cell membrane 
polarization that trigger modifications of 
membrane-bound proteins activities and alter the 
intracellular signaling transduction pathways in 
the corticomedullary tubular cells [19,47,
observed dyslipidemia in the current work can 
trigger signaling pathways that are involved in 
the development of DN [48].  
 
GE significantly attenuated the observed 
hyperlipidaemia in diabetic rats, mostly by 
modifying the expression of genes involved in 
lipid metabolism and via TRPM8 activation 
Intriguingly, an anti-inflammatory role for TRPM8 
has been reported, where TRPM8
exhibited aggravated inflammatory conditions 
[50]. Dyslipidemia and inflammatory markers 
such as tumor necrosis factor
associated well with renal impairment in diabetes 
[51].

 
Proposed model of TRPM8 in diabetic nephropathy 

Under normal condition there is restriction of growth factor signaling. Hyperglycemia, ROS, inflammation, VEGF 
activation and podocytopathy lead to alteration of TRPM8 expression. GE treatment activated and increased 

TRPM8 expression that in turn increases its own expression as well as decreased VEGF signalling
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modifying the expression of genes involved in 
lipid metabolism and via TRPM8 activation [49]. 
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Based on the ability of TRPM8 to modulate 
cytokine expression by increasing the expression 
of the anti-inflammatory cytokine; interleukin-10 
and decreasing that of TNF-α [33], a TRPM8 
mediated role of GE in immunoinflammation can 
be concluded.  
 
Other member of the TRPM family, TRPM5 is 
expressed within the pancreatic islets of 
Langerhans, where it regulates the frequency of 
Ca2+ oscillations and contributes to insulin 
release by β-cells [52]. The present work showed 
decreased TRPM8 expression in pancreata of 
diabetic rats that was modulated by GE 
treatment revealing that the observed 
hypoglycaemic effect of GE might be TRPM8- 
mediated.  
 
Furtherly, TRPM8 knockout mice have increased 
rates of insulin clearance and degradation 
compared to wild type ones; revealing a novel 
role of TRPM8 as a regulator of serum insulin 
[13]. A role of TRPM8 in insulin signaling can’t be 
omitted, since insulin rapidly and directly signals 
to podocyte and dynamically remodels its 
cytoskeleton [53]. In the current study renal 
TRPM8 expression correlated negatively with 
glucose levels and positively with plasma insulin. 
Coinciding with this, TRPM8 has been expressed 
in brown adipocytes and associated with glucose 
homeostasis; TRPM8 knockout mice developed 
obesity on high fat diet and failed to respond to 
menthol induced weight loss suggesting an 
important role of TRPM8 in molecular signaling 
of obesity.  
 
Collectively, and as depicted in Fig. 7 diabetic 
podocytopathy may act on translational or 
posttranslational pathways to modify renal 
transcriptome and to determine the progression 
of nephropathy [54]. Therefore, persistent 
hyperglycemia, ROS, inflammatory cytokines as 
well as altered insulin homeostasis would end in 
activated VEGF signaling, decreased expression 
of TRPM8, cytoskeletal remodeling and 
ultimately ESRD.  
 
5. CONCLUSION 
 
The present study demonstrates that GE 
treatment ameliorated STZ-induced DN in                      
rats via multifaceted molecular mechanisms.               
Our salient finding is the novel role of                    
TRPM8 in DN. GE increased renal TRPM8 
expression, abrogated oxidative stress, 
decreased VEGF expression and improved 
podocytopathy.  

The exact mechanism of TRPM8 at various types 
of renal cells warrants future studies to open new 
avenues for developing new therapeutic targets 
of DN. 
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