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Abstract

The duration of a gamma-ray burst (GRB) is a key indicator of its physical origin, with long bursts perhaps
associated with the collapse of massive stars and short bursts with mergers of neutron stars. However, there is
substantial overlap in the properties of both short and long GRBs and neither duration nor any other parameter so
far considered completely separates the two groups. Here we unambiguously classify every GRB using a machine-
learning dimensionality reduction algorithm, t-distributed stochastic neighborhood embedding, providing a catalog
separating all Swift GRBs into two groups. Although the classification takes place only using prompt emission
light curves, every burst with an associated supernova is found in the longer group and bursts with kilonovae in the
short, suggesting along with the duration distributions that these two groups are truly long and short GRBs. Two
bursts with a clear absence of a supernova belong to the longer class, indicating that these might have been direct-
collapse black holes, a proposed phenomenon that may occur in the deaths of more massive stars.

Unified Astronomy Thesaurus concepts: Gamma-ray bursts (629); Astronomy data analysis (1858); Astronomy
data visualization (1968); Light curve classification (1954); Supernovae (1668); High energy astrophysics (739)

Supporting material: machine-readable table

1. Introduction

The duration of a γ-ray burst (GRB) is a key indicator of its
origin, with long-duration bursts typically associated with the
core-collapse of a stripped massive star (Hjorth et al. 2003;
Stanek et al. 2003) and the short-duration bursts with mergers
of neutron stars (Berger et al. 2013; Tanvir et al. 2013;
Ghirlanda et al. 2018). The dividing line is usually set at
T90≈2 s (Kouveliotou et al. 1993; Tavani et al. 1998; Paciesas
et al. 1999). However, the long and short distributions are
known to overlap substantially and neither duration nor any
other parameter so far considered such as spectral hardness
(Kouveliotou et al. 1993) or lag (Norris et al. 1986; Norris &
Bonnell 2006) gives a clean separation of the progenitor type
based on the prompt properties.

Considerable effort has been expended in trying to find a
clean separation of burst types based on many other burst
properties (Fruchter et al. 2006; Nakar 2007; Bromberg et al.
2011, 2013; Zhang et al. 2012). However, a complete
separation has not yet been possible.

Ideally, classifying bursts should be done from the entirety
of the light curve. However, the full light curve is a high
dimensional data set, which makes comparing bursts hard
because it is difficult to determine which information is most
important. As a result, proposed classifications have previously
relied on a small number of easily-described summary statistics
such as duration, spectral hardness, and lag. This has led to
significant progress, but not to a clean separation between short
and long GRBs.

It has been hoped that with the right choice of summary
statistics, there would be a clear separation into short and long
GRBs. This work uses the dimensionality reduction algorithm
t-distributed Stochastic Neighbor Embedding (t-SNE; Maaten
& Hinton 2008; van der Maaten 2014) to instead reduce full
GRB light curves to points in a two-dimensional space. The

location that each light curve is mapped to in these two
coordinates does not represent properties of that light curve, but
rather can only be calculated from information about all of the
light curves in the entire data set. Applying this technique to
light curve data from the Swift satellite, we find a clear
separation into two groups, with possible additional subgroups.
In Section 2, we describe t-SNE and the process of

assembling a map from the Swift data set. The resulting map
and implied classification into short and long GRBs is shown in
Section 3, along with a comparison between each group with
expected properties. In Section 4 we discuss how this
classification works for GRBs of special interest. These results
are discussed further in Section 5, including an application of
this categorization to GRBs whose classification has been the
subject of past debate.

2. Methods: Applying t-SNE to GRB Light Curves

The classification proposed here takes the entirety of the
normalized Swift light curves from prompt emission and in an
unsupervised way determines which GRBs should be con-
sidered similar based on the prompt data alone. This is done
using t-SNE, a dimensionality reduction algorithm that can take
complex, high-dimensional data and produce a faithful
representation of that data in a low-dimensional space.

2.1. t-Distributed Stochastic Neighbor Embedding

t-SNE takes a set of high dimensional vectors, { }xi , and
calculates the probability that each xj should be considered a
neighbor of xi from the set of Euclidean distances {∣ ∣}-x xj i
and the perplexity, a hyperparameter that determines the sizes
of the neighborhoods based on the density of the data in the
respective regions and can be approximately interpreted as the
typical number of neighbors that should be considered similar
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when computing distances. Perplexity is formally defined
(Maaten & Hinton 2008) as

( ) ( )( )=PPerp 2 , 1i
H Pi

where Pi represents the conditional probability distribution over
all other { }xj given { }xi , and H(Pi) is the Shannon entropy of Pi

in bits. A higher perplexity increases the values for points
further away and promotes global structure, whereas a lower
perplexity is used to look for local structures and groupings of
only a few vectors. The introduction of perplexity is necessary
since dimensionality reduction cannot simultaneously preserve
both small- and large-scale structure in lower dimensions, and
perplexity controls their relative importance. It should be noted
that generating probabilities from Euclidean distances requires
that every xi have identical dimensionality, with none missing.

These probabilities are then used to map the set of
{ } { }x yi i in the lower-dimensional space, such that the
probability of yi and yj being neighbors in the new mapping is
as similar as possible to the probability that xi and xj were
considered neighbors. This process depends upon random
initialization, and running t-SNE on an identical data set can
produce a variety of maps with similar topology (cf. Steinhardt
et al. 2020, Figure 1). Thus, the axes of this low-dimensional
space have no proper labels or meaning; unlike principal
component analysis, an object further to the right on a t-SNE
map is not in some sense more “x-like”, but merely more
similar to nearby objects and less similar to more distant ones.
Essentially, the goal of t-SNE is to produce a simplified map
that can be easily visualized while preserving the structure of
the original data set, not to find a vector basis.

Although t-SNE is considered an unsupervised algorithm, in
practice the final map depends upon not the data and
hyperparameters alone, but also a series of human selections
in preparing that data. Producing a data set of vectors with
identical components requires a combination of removing
individual objects for which some properties are poorly
measured or unmeasured and instead removing some properties
from the calculation altogether (or choosing an alternative
metric for calculating neighbor probabilities). A choice of how
to format and scale the raw data can change the relative
weighting of various components in calculating neighbor
probabilities. These human influences can often be minimized
by running t-SNE on highly standardized data sets, such as the
catalog produced by one survey or one observatory.

2.2. Data Preparation for the Swift Catalog

Here, t-SNE is run on the full Swift GRB catalog3 (Lien
et al. 2016) in an attempt to classify all detected bursts. Swift
measures the light curve of each burst in four bands, 15–25,
25–50, 50–100, and 100–350 keV. The Swift data are released
as four binned, background-subtracted light curves with
temporal resolution 64 ms, and the start of the burst may vary
slightly from the trigger time. Because bursts vary greatly in
duration, there is a very wide range in the number of time bins
with statistically significant flux, where the reported flux for
Swift is measured as photon count cm−2 s−1.

Therefore, it is essential to standardize the data set prior to
running t-SNE, ideally in a manner that preserves meaningful
differences but erases differences that should not have physical

origin. For example, a translation of all light curves by the
same constant time offset should be ignored. A similar problem
is tackled when analyzing the benchmark Modified National
Institute of Standards and Technology handwritten digit data
set with machine learning, since the data needs a large amount
of preprocessing (e.g., normalization, deskewing, and noise
removal) in order to be effectively analyzed (LeCun et al. 1998;
Deng 2012). The goal is therefore to prepare data for t-SNE in a
way that retains all of the useful information but removes
irrelevant information that the analysis might otherwise use for
classification. The end result of this process must be a set of
vectors of identical dimension, for which it is still proper to
expect that bursts with similar physical origin will be similar
when compared component by component.
In our data, the main possible distractions would be (1) the

total time-integrated flux, which would only return the known
result that long GRBs typically but not always have higher
fluence; (2) different lengths of light-curve measurements,
which can depend upon noise in the tail of the Swift light
curves and is therefore extremely important; and (3) the
possibility of a trigger time offset common to all four Swift
bands, although any relative time delay between different
bands is still meaningful.
To remove these, light curves are normalized in every band

by the total time-integrated flux across all bands of that specific
burst (removing (1)), zero-padded in order to ensure a common
axis and length (partly removing (2);4 see Sacchi &
Ulrych 1998; Shen & Wang 2006), then concatenated before
taking the discrete-time Fourier transform (DTFT) of the light
curve measured in each individual band (removing (3)).
Because t-SNE relies on Euclidean distances, omitting these
steps would group bursts almost solely by effects which are
known not to produce a meaningful classification, e.g.,
omitting the normalization would effectively group bursts
nearly solely by the magnitude of the flux, which would render
only a known result; that long GRBs typically, but not always,
have higher fluence than short GRBs (e.g., Ghirlanda et al.
2009), but instead here bursts are grouped using the entirety of
the remaining information.
It should be noted that the DTFT is not necessarily an

optimal preprocessing solution for separating GRBs. Other
preprocessing techniques that preserve the information content
in the light curve would yield equally valid representations of
GRB classes, though possibly not as cleanly separated. As
explained in the previous paragraph, the main motivation for
the DTFT is that it suppresses some of the biases in the light
curves, while building on previous successful descriptors
(duration, hardness, and spectral lag) indicating that the general
shape of the light curve could be a defining characteristic.
The DTFT also does not formally guarantee that similar light

curves end up as close neighbors, but rather that light curves
with similar DTFT end up close together, as t-SNE acts on
Fourier components rather than flux measurements. Although
in principle one could imagine constructing a function that
would render a DTFT similar to a GRB light curve despite
looking dissimilar, this is unlikely to occur in real data. Thus,
having similar DTFTs is equivalent to having similar shapes,
since the DTFT in essence is just a change in basis.

3 Available at https://swift.gsfc.nasa.gov/results/batgrbcat/.

4 The remainder of (2) is completely accounted for by the fact that an
erroneous bias in duration would only, at worst, include noise-dominated
measurements that do not affect the FT significantly, and do not add any
significant fluence.
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Previous attempts at classification have typically focused on
summary data, such as duration (typically T90, the duration
containing 90% of the statistically significant flux, or T100,
containing 100% of the flux), spectral lag, flux or fluence, and
hardness. These are properties that can be calculated from the
light curves in each band, and therefore part of what is
available to t-SNE, but represent only a small subset of the full
data set. Here, the full Swift light curves are encoded then used,
and neighbor probabilities are ultimately produced from
≈30000-dimensional vectors, encoding far more information
than summary data.

2.3. Summary of Classification Scheme

Using the background-subtracted light curves, Swift bursts
can be classified with the following procedure:

1. The 64 ms binned light curve in each band is limited to
the interval out to T100.

5 Afterwards they are padded with
zeros, placing light curves of different length on a
standard basis.

2. Individual light curves are normalized by the total
fluence, obtained as the numerical integral of the flux
across all bands, preserving spectral hardness.

3. The resulting light curves are concatenated and the DTFT
is applied, producing vectors suitable for input
into t-SNE.

4. t-SNE is applied to the vectors xi, consisting of the
Fourier amplitudes, with perplexity set to 30 (a choice
specific to the Swift catalog), terminating once no
improvement is made on the cost function.

5. The resulting map is examined, in the hopes that bursts
will be clearly separated into clusters that can be
interpreted as arising from a similar physical origin.

The success of this procedure is evaluated in the following
sections.

3. Classification

The procedure described in Section 2.3 indeed maps the
GRBs in the Swift catalog to a two-dimensional space
(Figure 1). As a result, light curves with similar Fourier
amplitudes end up as close neighbors, which translates to light
curves with similar shape being grouped close together, as per
the discussion in Section 2.2.
Even more promisingly, there is discernible structure in the

resulting map. The exact mapping can change depending upon
random seeds or the order in which data are presented to t-SNE,
but structure such as grouping and topology remains (see
Figure 1 and the related discussion in Steinhardt et al. 2020).
Bursts are divided into two groups, with a clear separation
between the larger group at the top and a smaller group at the
bottom as presented in Figure 2(a). Further substructure exists
as well, discussed in Section 3.1.
A closer examination of the duration (T90) of each burst

indicates that the t-SNE map has grouped objects approxi-
mately (but not entirely) by duration (Figure 1). The larger
group at the top is generally of longer duration, while the
smaller group at the bottom is shorter. Both groups have
possibly (skewed) Gaussian distributions in log duration
(Figure 2(b)), with some overlap in the T90∼1–10 s range.
In short, the mapping cleanly divides Swift GRBs into two

groups, with the duration distributions of the two groups
similar to what might be expected for a classification into short
and long bursts. To avoid confusion with preexisting
classifications, the two t-SNE groups will be referred to as
type-S and type-L.
A full list of our classification of Swift GRBs is given in

Table 1.

3.1. Comparison with Other Classifications

Although the classification of many individual GRBs as
short or long is uncertain, particularly for bursts of intermediate
duration, many bursts can be unambiguously classified as short
or long on the basis of other observations. It is therefore
necessary to confirm that the classification proposed here
matches these previous results.
Perhaps the strongest association is that between supernovae

and long GRBs, with every GRB with detection of an

Figure 1. t-SNE mapping of Swift light curves, colored based on duration ( )Tlog 90 . Several sample light curves in the four observed bands are shown, with similar
light curves placed as near neighbors and dissimilar light curves placed further apart. A clear separation into two groups is visible, with the smaller, bottom group
(referred to as type-S) generally but not uniformly of shorter duration (see Figure 2). The axes resulting from t-SNE have no clear physical interpretation or units; only
the structure is meaningful.

5 The DTFT would be unaffected by the additional extra bins containing
solely noise, and thus the limited information between T90 and T100 can be
included.

3

The Astrophysical Journal Letters, 896:L20 (6pp), 2020 June 20 Jespersen et al.



associated supernova unambiguously being long (Hjorth &
Bloom 2012; Cano et al. 2017). Eleven bursts in the Swift
catalog, GRB 060218A, GRB 071112C, GRB 100316D,
GRB 111209A, GRB 111228A, GRB 120714B,
GRB 120729A, GRB 130215A, GRB 130831A,
GRB 161219B, and GRB 171010A have clearly detected
associated supernova that are well-characterized by spectrosc-
opy (Bufano et al. 2012; Cano et al. 2014, 2017; Kann et al.
2019; Klose et al. 2019). Due to corrupted files for
GRB 060218A, not having BAT light-curve data available
for GRB071112C6 and GRB171010A,7 these are not included.
The remaining eight are all classified as type-L by the t-SNE
map (Figure 4).

It has also been suggested that there may be a link between
the hardness of the GRB spectrum and classification (Kouve-
liotou et al. 1993; Ghirlanda et al. 2009). It is known that this
does not produce a clean, unambiguous separation between
short and long GRBs. However, there is still likely a strong
correlation between hardness and type, particularly since the
hardness of a burst should be closely related to its physical
origin.

The t-SNE mapping indeed shows that bursts with similar
light curves tend to have similar hardness (Figure 3). Bursts
with harder spectra group together in tight clusters on the
t-SNE map, and the hardest bursts lie in a tight cluster and are

all categorized as type-S. However, clusters of hard bursts exist
both in the type-S and type-L groups. In general, most type-S
bursts are harder than most type-L bursts, but hardness alone is
insufficient to determine whether a burst is type-S or type-L.
Rather, the t-SNE map (Figure 4, bottom) at lower perplexity
suggests that there might be substructure in both the type-S and
type-L classes. The cause for this is currently undetermined,
but could be associated with spectral hardness. Another
measure of this feature could be the peak energy in νf (ν),
Epeak. However, Swift frequently is unable to reliably measure
Epeak due to the relatively low energy bandpass of Swift-BAT.
As a result, there is less structure in maps colored by Epeak than
in maps using spectral hardness ratio compared across the
Swift-BAT bandpass, although hardness also is an incomplete
diagnostic.

Figure 2. (a) The clear separation into two groups (purple and orange) strongly suggests a classification of GRBs into two distinct types. (b) The distributions of
duration in log(T90) of type-L and type-S bursts are approximately normal and similar to those expected for a long and short classification.

Table 1
Classification of Swift GRBs as Either Type-S or Type-L Based on the

Separation in the DTFT-based t-SNE Map

GRB T90 (s) Type

GRB 190727B 39.2 L
GRB 190719C 185.8 L
GRB 190718A 704.0 L
GRB 190706B 43.6 L
GRB 190701A 38.4 L
L L L

(This table is available in its entirety in machine-readable form.)

Figure 3. Coloring bursts on the t-SNE mapping by the flux ratio of the 50–100
and 25–50 keV bands, a proxy for hardness, indicates several clusters of hard
bursts. The hardest bursts are all classified as type-S, but some type-S bursts do
not have hard spectra, and several tight clusters of type-L bursts also exhibit
harder spectra. A reasonable interpretation is that there are multiple classes both
of type-S and -L bursts with different physical origins, with some of these
origins producing harder spectra.

6 Since its emission overlapped with 071112B.
7 GRB171010A is a Fermi burst that was followed up by Swift.
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4. GRBs of Special Interest

The clear separation on the t-SNE map into two groups,
namely type-S and type-L, provides labels for all GRBs,
including ones that were previously difficult to classify.

In addition to providing this broad classification, there is
considerable additional information provided by the t-SNE
map. Because each burst is placed close to other, similar bursts,
it is possible to determine both whether an object is typical
(many neighbors) or atypical (fewer neighbors, and often on
the edges of a cluster). If some bursts have additional
information available such as an observed afterglow or host
galaxy, it may be natural to ascribe similar properties to
neighboring bursts for which those observations are
unavailable.

A full discussion of the various groups indicated is beyond
the scope of this paper. However, here we briefly describe the
t-SNE classification of several GRBs that have previously been
the subject of debate, as different analysis techniques have
disagreed on their proper categorization.

4.1. Supernova-less Long GRBs

GRB 060505 and GRB 060614 are of special interest, since
they are long-duration GRBs with no observed optical

counterpart (Della Valle et al. 2006; Fynbo et al. 2006). They
have therefore been suggested to have their own progenitor
mechanism, constituting their own class of Extended Emission
Short Gamma Ray Bursts (EE sGRB; Norris & Bonnell 2006;
Ofek et al. 2007). The t-SNE map classifies GRB 060614 as a
type-L burst. It lies close to GRB 111209A, which has an
associated luminous SN (Kann et al. 2019), and in the same
cluster as GRB 111209A. This suggests that GRB 060614
would not have a separate progenitor mechanism, but is instead
a more standard long GRB.
GRB 060505 lies far away from the cluster of type-S GRBs

and clusters with type-L GRBs. This indicates that
GRB 060505 was a long GRB. However, it does not group
cleanly with the confirmed SNe, suggesting there may have
been a different physical origin.

4.2. Short GRB Association with Kilonovae

GRB 130603B is a short GRB with a kilonova (KN)
counterpart (Tanvir et al. 2013). GRB 130603B lies in the
type-S GRB group close to GRB 160821B, which has also
been theorized to have had an associated KN (Lamb et al.
2019; Troja et al. 2019). This suggests that GRB 160821B may
indeed be associated with a KN. Another proposed KN
candidate is GRB 050509B, which is unfortunately removed
from our catalog due to having a duration of 1 time bin or less,
making the DTFT meaningless.
Since only one burst with an optical KN counterpart is

included in the catalog, extrapolation is not very useful. As
more KN are discovered, this method will become an
increasingly important feature of the t-SNE map.
GRB170817A, the burst associated with GW170817 is not a
Swift burst and thus is not included in our analysis (Abbott
et al. 2017; Goldstein et al. 2017).

5. Discussion

The application of the dimensionality reduction algorithm
t-SNE to GRB light curves observed by Swift is used to group
bursts based upon similarities with their neighbors. The
resulting map (Figure 2(a)) suggests that bursts should be
classified into two broad groups. An analysis of the duration
distribution, optical counterparts, and previous proposed
classifications strongly suggests that these two groups corre-
spond to short and long GRBs. If so, this technique would
provide a complete, unambiguous separation of the GRB
population into short and long bursts. A natural next step is to
determine which properties best correlate with classification
and use this to develop astrophysical models, although such a
study is beyond the scope of this Letter.
The t-SNE algorithm can be tuned to instead focus on

substructure, and it is possible that further subgroups exist
within these two populations (Figure 4). Substructure might be
associated with distinctions between bursts belonging to these
groups, perhaps indicating that a long GRB could be produced
by multiple physical causes. Because relatively few bursts have
known counterparts or other additional information, it is
difficult to connect these groups with physical origins.
However, the few bursts known to have a common origin,
such as supernovae, are indeed mapped to nearby locations.
Similarly, the confirmed kilonova GRB 130603B is a near
neighbor of GRB 160821B (Lamb et al. 2019), proposed as a
kilonova candidate.

Figure 4. (Top) The locations of several GRBs that have been the focus of
recent studies are indicated on the t-SNE mapping used throughout. Note that a
complete list of the t-SNE classification into long and short GRBs is available
in Table 1. (Bottom) Classification of GRBs using t-SNE run at a perplexity of
5, lower than the map shown in the other figures. The lower perplexity is
chosen to emphasize substructure.
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If these substructures indeed correspond with physical
origin, then the t-SNE map can be used to select bursts for
targeted follow-up. For example, it would be straightforward to
determine whether a new burst is a kilonova candidate based
upon whether it is placed close to GRB 130603B.

With small modifications to avoid recalculating the entire
map for a new object, t-SNE could also easily be used in an
automatic classification pipeline along with a suitable cluster-
ing algorithm. However, GRBs are sufficiently rare to warrant
individual human attention, with good choice of parameters, a
t-SNE map will have sufficient separation that human visual
classification is both possible and likely preferable.

5.1. Implications for Anomalous GRBs

This study demonstrates that GRB 060614, long-debated as a
possible extended emission short GRB, is indeed a long-
duration type GRB. Its lack of a supernova down to 5 mag
below SN1998bw presents a real challenge to standard jet-
driven supernova models and suggests a direct-collapse black
hole, as originally postulated by Fynbo et al. (2006). The same
is true for GRB 060505, which was at least 6 mag fainter than
SN1998bw and is found unequivocally to belong to the long-
duration category. The most compelling interpretation would
be that GRB 060505 and GRB 060614 were direct-collapse
black holes (Adams et al. 2017; Liu et al. 2019), a possibility
that has been theorized but not yet observed.

The methods developed in this work can be used to cleanly
divide all Swift light curves into two distinct classes. Based
upon the duration distribution and other properties it is
tempting to label type-S and type-L GRBs as short and long.
However, this classification is entirely empirical, based upon
the distribution of light-curve properties rather than on
astrophysics. One of the drawbacks of t-SNE is that it is not
immediately clear which properties of the full light curves have
been most influential in this classification or how those
properties might relate to underlying GRB astrophysics.
Whether these indeed have distinct astrophysical origins,
perhaps one arising from collapse and the other from collision,
will therefore require additional follow-up studies of each
group. It is hoped that this process will be far more
straightforward now that every GRB, even at duration ∼2 s,
can be unambiguously classified.
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