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Abstract

This paper analyses the dynamics of a fishery systeaniaquatic environment that consists of
zones: water hyacinth zone and free zone. Fish harvestitigvi®d in both the zones and fish migratipn
is allowed from water hyacinth zone to free zone and nok.bghis paper presents dynamics of the

stability when discrete time delay is incorporated infisie death rate due to oxygen depletion and water
pollution caused by water hyacinth. It is shown that ithhe telay can cause a switch from stable state to
unstable state and there by Hopf-bifurcation occurs. Nigalesimulations are carried out to validate the

analytical findings.

Keywords: Water hyacinth; fishery; stability; time delaygp#bifurcation.

1 Introduction

Water hyacinthEichhornia crassipésis one of the aquatic plants in the nature though it isené& Brazil,
globally wide spread and creates a nuisance in the aquatiomment. Once these plants are introduced
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into the natural environment they rapidly increase in c@esteecause of the highest growth rate in saltwater
or fresh water. It doubles in number in a times range dmtw6-18 days, for these reasons hyacinth has
earned nicknames such as “the weed from hell” and “the ihdalévil” [1].

Fish provides a good source of high-quality protein, and it @&tains many vitamins and minerals. For
this reason, it is consumed as a food by many specieglinglhuman through out the world. So the study
of existence for Fish population is very much essentialinsociety. Quantitative models of fish population
include simple models that consider only the biomass of thelgiggn processes, such as growth and
recruitment. These are often adjusted to incorporate ritpadt of external effects, such as predation,
competition for food supply and other environmental factors.

The water hyacinth effect greatly influence the fishustdy, its pollution appears in different levels ramyi
from low to moderate and high. The hyacinth mats impagtsfgiantly on fishing activities due to increase
in time to access the fishing ground. The mats also had eetaieffects by blocking light, severely
reducing oxygen levels and allowing poisonous gases sublidrogen sulfide and ammonia. This result in
loss of aquatic biodiversity [2]. Already many reséars [3-13] links water hyacinth pollution to fish
production. In this they were discussed the effect of watacinth in fish growth.

To protect the fishery population, having much threat froatew hyacinth, adopting two equal zonal
systems (in terms of area and volume of water) is biefga. A zone having no influence of water hyacinth,
called hyacinth free zone, is formed and fishing is takingepia both zones. It should be noted that we are
considering the same fish species in both zones. In this ppegest it is assumed that the density of fish is
directly proportional to the abundance of fish at timea(t)l the catch ability coefficient decreases as the
abundance level of water hyacinth increases. Furthesstagsumed that water hyacinth abundance leads to
biological effects such as fish death and fish migrmatibhe oxygen depletion and the environmental
pollution [14-23] cause by the growth of water hyacinth mot have immediate impact on the death of the
fish population, but it will have some time lag. The efffef this time lag on the dynamics of this system is
presented in this population.

2 Mathematical M odel

To formulate a mathematical representation of wagarcinth model the following notations are being used.
Let W(t) and F(t) represents the biomass densitiesbfdopulation in water hyacinth zone and free zone of
water hyacinth respectively at any time'gx denote the rate at which water hyacinth reduces fisli;cgtc
denote fish migration rate from water hyacinth zonede frone of water hyacinth; r and s denotes fish death
rates due to oxygen depletion and water pollution due to vgsinth; ¢ and e denote the catchability
coefficient and harvesting efforts in both the zon@sand (3 denote the intrinsic growth rates of fish
population in both the zones respectively; m and n denote carmgpegity of fish population in both the
zones. Further both the variables W and F are non-negatid the parameters are assumed to be non-
negative.

The mathematical formulation of water hyacinth modekmesented by the following system of first order
non linear ordinary differential equation:

dw W
E:aW(l—Ej—(l—p) ceW-(y+ r+ § W

(2.1)
dF

_ _F _
E—,BF(l n}ww ceF
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Now incorporating time delayr{) in fish death rate due to oxygen depletion and water pwilecaused by
water hyacinth , the equation (2.1) becomes

‘Z_Vt":m/v(l—%j—(l—p) ceW=¢ W= W t7)~ sW +7)
(22)

aF BF (1—EJ +{YW - ceF
dt n

3 Equilibrium Analysis

The equilibrium points of the system (2.1) and (2.2) aresthations of the steady state equations.

a\N(l—VEVJ—(l—p) ceW-(¢+ r+ 3 WE O

BF (1—EJ +YW-ceF=0

n

The possible equilibrium points are

E (O, O) (In the absence of both the zones)
E, (y, O) (In the presence of water hyacinth zone)
E, (0,5) (In the presence of free zone of water hyacinth)

E, (y* O ) (In the presence of both the zones i.e., the interioribrjuiin)

Case (i): The population is extinct and this trivial steady stdbeays exists.

e - dwW
Case (ii): if ) is positive solution ofE =0 then

=g[,oce+(a— ce-~ 1- 3]

This positive steady state exists only when

pce+a > cery + r+ ¢ (3.1)

dF
Case (iii): if J is the positive solution ofd—t =0 then

s=lp-cd
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This positive steady state exists only when

£ >ce 3.2)

W F
Case (iv): if (y* 0 ) are the positive solutions e% =0 and(il—t =0 then

y =2 pceta-ce-w- r 3
a
0 +GJ +H=0 (3.3)

Where G -—-—%[,B—CG]

mn
H 4N [a+pce—(cety+ r+ ]
ap
From the biological point of view we only interested onittterior equilibriumkE, (y*,é' ) .

LetW=y—y ,F=0-0 be the perturbed variables.

After removing the non-linear terms we obtain the lingadsystem corresponding to (2.2) is

d—y{a——zar': -(1-p)ce-y¢—(r+9 e‘“}y

dt
5 (3.4)
d—d :[//y+{18——2’8 —ce}d
dt n
The characteristic equation of the linear systemvsrgby
A(A,T)=A?+PA+Q+e™(RI+ T)=0 (3.5)

Where P = -A-D; Q = AD;

R=r+s; T=-D(r+5s)

And A:a—za—y—(l—p)ce—z/f
m
B=y/
D:,B—Z’Bg -ce
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Now we discuss the stability of the interior equilibrium pdinthe presence and absence of delay.
4 Stability Analysis

4.1 Stability analysisin the absence of delay
The characteristic equation of the model (2.2) is
A2+ XA+Y =0 (4.1)
Where X=P + R
Y=Q+T
Here X>O0andY >0

So the Eigen values of the characteristic equation ithhergeal and negative or complex conjugate with
negative real parts.

Hence the system (2.1) is locally asymptoticallpka

Theorem 1: The system (2.1) is locally asymptotically stabIeeq(y*,J ) if the equation (4.1) has both

the roots with negative real parts.

4.1.1 Numerical analysis of the model in the absence of delay

Re arrangement of equation (2.1), a technique applied bgi{@&s

dw a

—— =-W| =W+ + r+ st +

" (m Y+ r+ s+ ce-(a pc&j
aF __ (£F+Ce—ﬂj+¢lw

dt n

In this mathematical model, the parametatss3, o,{,r ,S,C,m, N are assumed to be positive constants
and0<c<landO< p<1.

Fish catch in water hyacinth zoneceW— p ceW\
= (1- p)cew.

When p =1, then no fish catch in water hyacinth zone.

dw
If ¢ +r+s+ce- (a +0 Cé >0 thenE <0 then the system is collapsed. Hence the condition that

dF
Y+r+s+ce- (a +p0 Cé <0 is imposed. Similarlyce— 8 > Othen a <0
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Therefore, for the existence of the systear— £ < Qis imposed
Hence we requir¢y +r +s+ ce< a + p ceandce< S3.
Hence throughout our analysis in this work we assume that
a + pce—(y + r+ s+ c§ >0and S-ce>0.
This is explain it (3.1) and (3.2).
Example 1: Consider the following parameters for the model (2.1)
m=600;n= 300;e= 10;c= 0.004= 1.8= 0.p,= 0.32= 0.1% 045,0.36;
W(0) =30;F(0 = 40

Equilibrium points for the system (2.1) - (2.2) are (189.125,8&33

Fig. 1 shows the time series evolution of fish populatiorhéntivo zones showing stable oscillation of the
population towardsE, (y* 0 )

Fig. 1. Stable variation of thefish population for 7 =0

4.2 Stability analysisin the presence of delay
Let A (T) = H(T) + iI7(T) be a root of the characteristic equation (3.5).
Let T be a particular value of the delay such tlﬁ( T) = O,/7(T) >0

SubstitutingA =177 in (3.5) we get,
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(-n? +inP +Q)+(Rip+T) e =0

= (—/72 +inP +Q)+(R'v7 +T)(cospr —isimr) = C
Separating the real and imaginary parts we get,

n*-Q=TcosyT + Ry simr (4.2)

Pn=-Rgpcospr + T simr 3.
Squaring and adding (4.2)-(4.3), we get

nt+n*(P*-2Q- R+ (Q2-T9 =
The above equation can be written in the form of

n*+Kn?+L=0 (4.4)
Where K=P? -2Q- R: L=Q* - T?
Case 1 If K= P? - 20- R >0 then the equation (4.4) does not have any real solutions.

Theorem 2: If K>0, L>0 then the equilibrium poinE4(y*,5* ) is locally asymptotically stable for all
r=0.

Proof: Forr =0, E, (y* 0 ) is locally asymptotically stable from theorem 1.

Whenr >0, by case 1 the equation (4.4) does not have any rkdlosoi.e., there exist no reglas a
solution for the equation (4.4).

Hence no reall =i7 (17is real) will be a solution to the equation (3.5).

It is obvious that the equilibrium poiriE,, (y* 0 ) is locally asymptotically stable for all=0.

Case 2: If K> 0, L <0 then the equation (4.4) have a unique positieg, it is /7§ and let the corresponding
T bel,.

Case 3: if K< 0, L >0 andK? —4L > 0 then the equation (4.4) have two positive roots. Let themp’be

and the correspondingis 7.

Eliminating Sin@r from (4.2)-(4.3)
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_n*(T-PR-QT
cosyr = T2 +I72 R2
2 — —
T, :larcco{,7 (T2 PF? > QT}+ 2z (4.5)
n T°+7°R n

Wherez =0, 1, 2..., etc.

5 Hopf-bifurcation Analysis
In this section, investigate the effect of the time delayifurcations of the system.

Now differentiating equation (3.5) with respectfiq

[2A+P+Re™~7(RA+T) e'“]%:A & ( R+ ¥

{MT: 2+P . R 1
dr]  -A(2*+pA+Q) A(RI+T) A

[d/lT_ {d/lr_ 2(n*-Q)+P* R
- =Re — = - (5.1)
dr dr /7“+(P2—2Q)/72+Q2 T +n°R
21 p2-2Q- R
{2’7 T2+/72F?2 } (5.2)

T d o day?
Thus &gn{a(ReA)l:i” = S|gr_ Re{ drj }
277 +(P?- 2Q- Rz)}

= sign

T2 +I72R2 (53)

Thus 77 may be/), or/}, .
The above said positive roots , either from case 2 or éase 3, satisfy all the equations from (4.2)-(4.5).
Theorem 3: The system (2.2) is locally asymptotically stabldfqt( y* 0 ) if

K >0 and L < 0 for allT <7,and is unstable for all' > 7, and hopf-bifurcation occurs &t=T7,.

Proof: From equation (5.3) we have
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B -1
sugn[ d (ReA)} = sigr Re{ﬂ) }
dr J=in dr ~
0 L A=y

7% +(P?-2Q- )
T2 +,72R2

sign

Itis clear that

d . dAY"
sign ReA =s Re — > ( 5.4
ig [d ( )L% Ig{ {dr) } _ (5.4)

1=11o,.T=To

This signifies that there exists Eigen value with negatad part fol’ <7 and there exist Eigen value with

positive real part fol >T,.More over the condition of hopf-bifurcation is then sagigdfiyielding the
required periodic solution.

Theorem 4: The system (2.2) is locally asymptotically stable at

E4(y*,5*)WhenTD[Tg,T')U(T )U U( T .7, ) if K<0, L>0 andK?-4L > 0and it is
unstable whem D[TJ,T(;)U( )U U( ol ) for some positive integer i. Therefore there are

bifurcations at the equilibrium poir1f4 (y*,J ) whenrt = rz‘ ,2=0,1, 2,...

Proof: From equation (5.3) we have

S|gn[ d (Re/l)} = sign + - KE-4L
drt {(-n2+Q) + P2} {72+ Rn}
d
Therefore, {—(Re)l)} > 0.
dr n=n.r=r,
2 —
Again, S|gn{ d (Re/l)} = sign - KZ-4L
dr =i, [(—17 +Q) + P2 2}{T2+ R%72}
There fore[ d (Re/l )} <0.
dr n=n-.1=1,

Hence the transversality conditions are satisfied.

This completes the proof.
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5.1 Numerical analysis of the model in the presence of delay

Example 2: Consider the following parameters for the model (2.2)
m=600;n= 300,e= 10;c= 0.0047= 1.B= 0.8= 0.32= 0.1% 045,0.36;
W(0) =180; F(0)= 330;

Fig 2 shows the time series evolution of fish populatiorhéttvo zones showing stable oscillation of the
population towardsE, (y*,J ) delay=1.53k 1.549)

" T T T T T
/\N\W Ao e e g St et oy g gt

oals on

ichp

M S et

time

Fig. 2. Stable variation of the population for 7 =1.53

Fig 3 shows the time series evolution of fish population inwmeezones showing unstable oscillation of the
population towardsE, (y* 0 ) delay=1.549¢, )

mewwmwwwwwwwwmwwwmwmwmm

fish population
9

| | | |
100 200 300 %00 =00 500 700 a0 E 1000
time

Fig. 3. Unstable variation of the fish population for 7 =1.549

10
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Example 3: Consider the following parameters for the model (2.2)
m=600;n= 300,e= 10;c= 0.004r= 1.8B= 0p= 0.238= 0.20;
r=0.465= 0.37;W 0= 18CE( P= 330.

Fig 4 shows the time series evolution of fish populatiothentwo zones showing stable oscillation of the
population towardsE, (y* 0 ) delay=1.48k 1.495)

‘‘‘‘‘‘

Fig. 4. Stable variation of the fish population for 7 =1.48

Fig 5 shows the time series evolution of fish population invezones showing unstable oscillation of the
population towardg, (y*,dd) delay=1.495¢, )

fch pop-bizn

‘‘‘‘‘‘

Fig. 5. Unstable variation of the fish population for 7 =1.495

From our analysis it is observed that slight increments inntbeel parameters associated with water
hyacinth the value of y decreases (see example 2 and example 3).

11
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6 Conclusions

In this paper we investigated the effect of water hythcon the equilibrium of fish biomass densities. The
equilibrium of the model was analyzed.

1.
2.

3.
4.

5.

The study has proved that water hyacinth have severe iropdich stock.

Slight increments on the model parameters associatedwaiier hyacinth completely changed the
equilibrium of the model.

Fish population in the water hyacinth zone was decreasing iadhilibrium.

It is observed that the delay of certain dimensions caoce instability oscillations via hopf
bifurcation with switching of stability.

Water hyacinth may lead to fish extinction; thereforeom$f should be done to eradicate it with
whatever means which are environment friendly.
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