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Abstract 
 

This paper analyses the dynamics of a fishery system in an aquatic environment that consists of two 
zones: water hyacinth zone and free zone. Fish harvesting is allowed in both the zones and fish migration 
is allowed from water hyacinth zone to free zone and not back. This paper presents dynamics of the 
stability when discrete time delay is incorporated in the fish death rate due to oxygen depletion and water 
pollution caused by water hyacinth. It is shown that the time delay can cause a switch from stable state to 
unstable state and there by Hopf-bifurcation occurs. Numerical simulations are carried out to validate the 
analytical findings. 
 

 
Keywords: Water hyacinth; fishery; stability; time delay; Hopf-bifurcation. 
 

1 Introduction 
 
Water hyacinth (Eichhornia crassipes) is one of the aquatic plants in the nature though it is native to Brazil, 
globally wide spread and creates a nuisance in the aquatic environment. Once these plants are introduced 
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into the natural environment they rapidly increase in coverage because of the highest growth rate in saltwater 
or fresh water. It doubles in number in a times range between 6-18 days, for these reasons hyacinth has 
earned nicknames such as “the weed from hell” and “the beautiful devil” [1]. 
 
Fish provides a good source of high-quality protein, and it also contains many vitamins and minerals. For 
this reason, it is consumed as a food by many species including human through out the world. So the study 
of existence for Fish population is very much essential in our society. Quantitative models of fish population 
include simple models that consider only the biomass of the population processes, such as growth and 
recruitment. These are often adjusted to incorporate the impact of external effects, such as predation, 
competition for food supply and other environmental factors.  
 
The water hyacinth effect greatly influence the fish industry, its pollution appears in different levels ranging 
from low to moderate and high. The hyacinth mats impacts significantly on fishing activities due to increase 
in time to access the fishing ground. The mats also had detrimental effects by blocking light, severely 
reducing oxygen levels and allowing poisonous gases such as hydrogen sulfide and ammonia. This result in 
loss of aquatic biodiversity [2]. Already many researchers [3-13] links water hyacinth pollution to fish 
production. In this they were discussed the effect of water hyacinth in fish growth.    
 
To protect the fishery population, having much threat from water hyacinth, adopting two equal zonal 
systems (in terms of area and volume of water) is better idea. A zone having no influence of water hyacinth, 
called hyacinth free zone, is formed and fishing is taking place in both zones. It should be noted that we are 
considering the same fish species in both zones. In this present paper it is assumed that the density of fish is 
directly proportional to the abundance of fish at time (t) and the catch ability coefficient decreases as the 
abundance level of water hyacinth increases. Further it was assumed that water hyacinth abundance leads to 
biological effects such as fish death and fish migration. The oxygen depletion and the environmental 
pollution [14-23] cause by the growth of water hyacinth will not have immediate impact on the death of the 
fish population, but it will have some time lag. The effect of this time lag on the dynamics of this system is 
presented in this population. 
 

2 Mathematical Model 
 
To formulate a mathematical representation of water hyacinth model the following notations are being used. 
Let W(t) and F(t) represents the biomass densities of fish population in water hyacinth zone and free zone of 
water hyacinth respectively at any time‘t’. ρ denote the rate at which water hyacinth reduces fish catch; ψ
denote fish migration rate from water hyacinth zone to free zone of water hyacinth; r and s denotes fish death 
rates due to oxygen depletion and water pollution due to water hyacinth; c and e denote the catchability 
coefficient and harvesting efforts in both the zones; α andβ denote the intrinsic growth rates of fish 

population in both the zones respectively; m and n denote carrying capacity of fish population in both the 
zones. Further both the variables W and F are non-negative and the parameters are assumed to be non-
negative. 
 
The mathematical formulation of water hyacinth model is represented by the following system of first order 
non linear ordinary differential equation:   
 

                   

( ) ( )1 1

1

dW W
W ceW r s W

dt m

dF F
F W ceF

dt n

α ρ ψ

β ψ

 = − − − − + + 
 

 = − + − 
 

                                                      (2.1) 
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Now incorporating time delay (τ )  in fish death rate due to oxygen depletion and water pollution caused by 
water hyacinth , the equation (2.1) becomes 
 

( ) ( ) ( )1 1

1

dW W
W ceW W rW t sW t

dt m

dF F
F W ceF

dt n

α ρ ψ τ τ

β ψ

 = − − − − − − − − 
 

 = − + − 
 

                             (2.2) 

 

3 Equilibrium Analysis 
 
The equilibrium points of the system (2.1) and (2.2) are the solutions of the steady state equations. 
 

( ) ( )1 1 0

1 0

W
W ceW r s W

m

F
F W ceF

n

α ρ ψ

β ψ

 − − − − + + = 
 

 − + − = 
 

 

 
The possible equilibrium points are  
 

( )1 0,0E (In the absence of both the zones) 

( )2 ,0E γ (In the presence of water hyacinth zone) 

( )3 0,E δ (In the presence of free zone of water hyacinth) 

( )* *
4 ,E γ δ (In the presence of both the zones i.e., the interior equilibrium) 

 
Case (i): The population is extinct and this trivial steady state always exists. 
 

Case (ii): if γ  is positive solution of 0
dW

dt
=  then  

 

( )m
ce ce r sγ ρ α ψ

α
= + − − − −  

 
 

This positive steady state exists only when  
 

ce ce r sρ α ψ+ > + + +                                                                                                           (3.1) 

 

Case (iii): if δ is the positive solution of 0
dF

dt
=  then 

 

[ ]n
ceδ β

β
= −

 
 



 
 
 

Murthy and Srinivas; BJMCS, 18(2): 1-13, 2016; Article no.BJMCS.27141 
 
 
 

4 
 
 

This positive steady state exists only when  
 

ceβ >                                                                                                                                           (3.2)  
 

Case (iv): if ( )* *,γ δ are the positive solutions of 0
dW

dt
=  and 0

dF

dt
=  then 

 

[ ]* m
ce ce r sγ ρ α ψ

α
= + − − − −  

2* * 0G Hδ δ+ + =                                                                                                                      (3.3)                                                                                                                                                          
 

Where   G = [ ]n
ceβ

β
− −

 
 

H= ( )mn
ce ce r s

ψ α ρ ψ
αβ

− + − + + +  
 

 

From the biological point of view we only interested on the interior equilibrium ( )* *
4 ,E γ δ . 

 

Let 
* *,W Fγ γ δ δ= − = − be the perturbed variables. 

 
After removing the non-linear terms we obtain the linearaized system corresponding to (2.2) is 
 

( ) ( )
*

*

2
1

2

d
ce r s e

dt m

d
ce

dt n

λτγ αγα ρ ψ γ

δ βδψγ β δ

− 
= − − − − − + 
 

 
= + − − 

 

                                                            (3.4) 

 
The characteristic equation of the linear system is given by 
 

( ) ( )2, 0P Q e R Tλτλ τ λ λ λ−∆ = + + + + =                                                                         (3.5)                                                                             

 
Where P = -A-D;   Q = AD;  
 
            R = r + s;    T = -D(r + s)  
 

And    A = ( )
*2

1 ce
m

αγα ρ ψ− − − −  

 
             B= ψ  
 

             D=
*2

ce
n

βδβ − −
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Now we discuss the stability of the interior equilibrium point in the presence and absence of delay. 
 

4 Stability Analysis 
 
4.1 Stability analysis in the absence of delay 
 
The characteristic equation of the model (2.2) is  
 

2 0X Yλ λ+ + =                                                                                                                         (4.1) 
 
Where X= P + R     
 
            Y= Q + T                                                                                         
 
Here    X > 0 and Y >0  
 
So the Eigen values of the characteristic equation are either real and negative or complex conjugate with 
negative real parts. 
 
Hence the system (2.1) is locally asymptotically stable. 
 

Theorem 1: The system (2.1) is locally asymptotically stable at ( )* *
4 ,E γ δ if the equation (4.1) has both 

the roots with negative real parts. 
 
4.1.1 Numerical analysis of the model in the absence of delay 
 
Re arrangement of equation (2.1), a technique applied by [3], gives 
 

( )dW
W W r s ce ce

dt m

α ψ α ρ = − + + + + − + 
 

 

dF
F F ce W

dt n

β β ψ = − + − + 
   

 
In this mathematical model, the parameters , , , , , , , ,r s c m nα β ρ ψ  are assumed to be positive constants 

and 0 1c< < and0 1ρ< < . 
 
Fish catch in water hyacinth zone = ceW ceWρ−  

                                                       =  ( )1 ceWρ− . 

 
When 1ρ = , then no fish catch in water hyacinth zone. 
 

If ( ) 0r s ce ceψ α ρ+ + + − + >  then 0
dW

dt
<  then the system is collapsed. Hence the condition that 

( ) 0r s ce ceψ α ρ+ + + − + <  is imposed. Similarly  0ce β− > then 0
dF

dt
<

. 
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Therefore, for the existence of the system 0ce β− < is imposed  
 
Hence we require r s ce ceψ α ρ+ + + < +  andce β< . 

 
Hence throughout our analysis in this work we assume that 
 

( ) 0ce r s ceα ρ ψ+ − + + + > and 0ceβ − > . 

 
This is explain it (3.1) and (3.2). 
 
Example 1:  Consider the following parameters for the model (2.1)  
 

600; 300; 10; 0.004; 1.5; 0.6; 0.32; 0.19; 0.45;0.36;m n e c r sα β ρ ψ= = = = = = = = = =  
( ) ( )0 30; 0 40W F= =

. 
 
Equilibrium points for the system (2.1) - (2.2) are (189.125, 333.80). 
 
Fig. 1 shows the time series evolution of fish population in the two zones showing stable oscillation of the 

population towards ( )* *
4 ,E γ δ

.
 

 

 
 

Fig. 1. Stable variation of the fish population for 0τ =  
 

4.2 Stability analysis in the presence of delay  
 

Let ( ) ( ) ( )iλ τ θ τ η τ= +  be a root of the characteristic equation (3.5). 
 

Let τ be a particular value of the delay such that  ( ) ( )0, 0θ τ η τ= >  

 
Substituting iλ η=  in (3.5) we get, 
 
 



 
 
 

Murthy and Srinivas; BJMCS, 18(2): 1-13, 2016; Article no.BJMCS.27141 
 
 
 

7 
 
 

( ) ( )2 0ii P Q Ri T e ητη η η −− + + + + =  

( ) ( )( )2 cos sin 0i P Q Ri T iη η η ητ ητ⇒ − + + + + − =
 

 
Separating the real and imaginary parts we get, 
 

2 cos sinQ T Rη ητ η ητ− = +                                                                                                (4.2)  
 

cos sinP R Tη η ητ ητ= − +                                                                                                    (4.3)             
 
Squaring and adding (4.2)-(4.3), we get 
 

( )4 2 2 2 2 2(P 2Q R ) 0Q Tη η+ − − + − =  

 
The above equation can be written in the form of 
 

4 2 0K Lη η+ + =                                                                                                                        (4.4) 
 

Where K=
2 22P Q R− − : L=

2 2Q T−  

 

Case 1: If K=
2 22P Q R− − >0 then the equation (4.4) does not have any real solutions. 

 

Theorem 2: If K>0, L>0 then the equilibrium point ( )* *
4 ,E γ δ is locally asymptotically stable for all

0τ ≥ . 
 

Proof: For 0τ = , ( )* *
4 ,E γ δ is locally asymptotically stable from theorem 1. 

 
When 0τ > , by case 1 the equation (4.4) does not have any real solution i.e., there exist no real η as a 
solution for the equation (4.4). 
 
Hence no real iλ η= (η is real) will be a solution to the equation (3.5). 
 

It is obvious that the equilibrium point ( )* *
4 ,E γ δ is locally asymptotically stable for all 0τ ≥ . 

 

Case 2: If K > 0, L <0 then the equation (4.4) have a unique positive root, it is 2
0η and let the corresponding 

τ be 0τ . 

 

Case 3: if K < 0, L > 0 and 2 4K L− > 0 then the equation (4.4) have two positive roots. Let them be 2η±  

and the corresponding τ isτ ± . 
 
Eliminating sinθτ from (4.2)-(4.3) 
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( )2

2 2 2
cos

T PR QT

T R

η
ητ

η
− −

=
+

 

( )2

2 2 2

1 2
arccosz

T PR QT z

T R

η πτ
η η η

 − −
= + + 

                                                                           (4.5) 

 
Where z = 0, 1, 2…, etc.  
 

5 Hopf-bifurcation Analysis 
 
In this section, investigate the effect of the time delay on bifurcations of the system. 
 
Now differentiating equation (3.5) with respect to τ , 
 

( ) ( )2 Re
d

P R T e e R T
d

λτ λτ λτλλ τ λ λ λ
τ

− − − + + − + = +   

( ) ( )
1

2

2d P R

d R Tp Q

λ λ τ
τ λ λ λλ λ λ

− +  = + −  +− + + 

( )
( )

2 21 1 2

2 2 24 2 2 2

2
Re

2

Q Pd d R

d d T RP Q Q

ηλ λ
τ τ ηη η

− −  − +   
 = = −    ++ − +      

                                   (5.1)                          

 

                                         

2 2 2

2 2 2

2 2P Q R

T R

η
η

 + − −=  + 
                                                                (5.2)                                                                    

 

 Thus   ( )
1

Re Re
i

d d
sign sign

d dλ η

λλ
τ τ

−

=

    =         
 

                                     

( )2 2 2

2 2 2

2 2P Q R
sign

T R

η
η

 + − −
 =

+  

                                                        (5.3)                                                                                     

 

Thus η may be 0η  orη± . 

 
The above said positive roots , either from case 2 or from case 3, satisfy  all the equations from (4.2)-(4.5). 
 

Theorem 3: The system (2.2) is locally asymptotically stable at ( )* *
4 ,E γ δ  if 

 

K >0 and L < 0 for all 0τ τ< and is unstable for all 0τ τ>  and hopf-bifurcation occurs at 0τ τ= . 

 
Proof: From equation (5.3) we have  
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( )
0

0

1

Re Re
i i

d d
sign sign

d dλ η λ η

λλ
τ τ

−

= =

    =         
 

                                                       

( )2 2 2

2 2 2

2 2P Q R
sign

T R

η
η

 + − −
 =

+  

 

 
It is clear that  
 

( )
0

0 0

1

,

Re Re 0
i

d d
sign sign

d dλ η η η τ τ

λλ
τ τ

−

= = =

    = >        
                                                   (5.4) 

 

This signifies that there exists Eigen value with negative real part for 0τ τ< and there exist Eigen value with 

positive real part for 0τ τ> .More over the condition of hopf-bifurcation is then satisfied yielding the 

required periodic solution. 
 
Theorem 4: The system (2.2) is locally asymptotically stable at 
 

( )* *
4 ,E γ δ When ( ) ( )0 0 0 1 1[ , ) , ... ,i iτ τ τ τ τ τ τ+ − − + − +

−∈ U U U  if K < 0, L >0 and 2 4 0K L− > and it is 

unstable when ) ( ) ( )0 0 1 1 1 1, , ... ,i iτ τ τ τ τ τ τ+ − + − + −
− −∈  U U U , for some positive integer i. Therefore there are 

bifurcations at the equilibrium point ( )* *
4 ,E γ δ when zτ τ ±=  , z=0, 1, 2,... 

 
Proof: From equation (5.3) we have  
 

( )
( ){ }{ }

2

22 2 2 2 2 2

4
Re

i

d K L
sign sign

d Q P T Rλ η

λ
τ η η η+= + + +

 
−   = +    − + + + 

 

 

 

Therefore,  ( )
,

Re 0
n

d

d η η τ τ

λ
τ +

+= =

  >  
. 

Again, ( )
( ){ }{ }

2

22 2 2 2 2 2

4
Re

i

d K L
sign sign

d Q P T Rλ η

λ
τ η η η−= − − −

 
−   = −    − + + + 

   

There fore ( )
,

Re 0
n

d

d η η τ τ

λ
τ −

−= =

  <  
. 

 
Hence the transversality conditions are satisfied. 
 
This completes the proof. 
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5.1 Numerical analysis of the model in the presence of delay 
 
Example 2:  Consider the following parameters for the model (2.2) 
 

600; 300; 10; 0.004; 1.5; 0.6; 0.32; 0.19; 0.45;0.36;

W(0) 180;F(0) 330;

m n e c r sα β ρ ψ= = = = = = = = = =
= =  

 
Fig 2 shows the time series evolution of fish population in the two zones showing stable oscillation of the 

population towards ( )* *
4 , 1.53( 1.549)E delayγ δ = <

  

 
 

Fig. 2. Stable variation of the population for 1.53τ =  
 

Fig 3 shows the time series evolution of fish population in the two zones showing unstable oscillation of the 

population towards ( )* *
4 0, 1.549( )E delayγ δ τ=

 
 

 
 

Fig. 3. Unstable variation of the fish population for 1.549τ =  
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Example 3:  Consider the following parameters for the model (2.2) 
 

( ) ( )
600; 300; 10; 0.004; 1.5; 0.6; 0.33; 0.20;

0.46; 0.37;W 0 180; 0 330.

m n e c

r s F

α β ρ ψ= = = = = = = =
= = = =

 

 
Fig 4 shows the time series evolution of fish population in the two zones showing stable oscillation of the 

population towards ( )* *
4 , 1.48( 1.495)E delayγ δ = <  

 
 

Fig. 4. Stable variation of the fish population for 1.48τ =  
 

Fig 5 shows the time series evolution of fish population in the two zones showing unstable oscillation of the 

population towards ( )* *
4 0, 1.495( )E delayγ δ τ=

. 

 
 

Fig. 5. Unstable variation of the fish population for 1.495τ =  
 

From our analysis it is observed that slight increments in the model parameters associated with water 

hyacinth the value of 0τ decreases (see example 2 and example 3). 
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6 Conclusions 
 
In this paper we investigated the effect of water hyacinth on the equilibrium of fish biomass densities. The 
equilibrium of the model was analyzed. 
 

1. The study has proved that water hyacinth have severe impact on fish stock. 
2. Slight increments on the model parameters associated with water hyacinth completely changed the 

equilibrium of the model. 
3. Fish population in the water hyacinth zone was decreasing in the equilibrium.  
4. It is observed that the delay of certain dimensions can induce instability oscillations via hopf 

bifurcation with switching of stability. 
5. Water hyacinth may lead to fish extinction; therefore efforts should be done to eradicate it with 

whatever means which are environment friendly.    
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