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Abstract

The existence of Paley-Hadamard (4t − 1, 2t − 1, t − 1) difference sets provides a platform for

solving the equation δδ̄ = n in the cyclotomic ring Z[ζ4t−1], where ζ4t−1 is root of unity, n > 1

and t > 1 are integers. We look at cases where ⟨n⟩ = ⟨δ⟩⟨δ̄⟩ in Z[ζ4t−1] but δδ̄ = n has trivial

solutions. This criterion is combined with other results to conclude non-existence of some

difference set parameters.

Keywords: Factoring; cyclotomic ring; difference sets; sylow theorems; dillon dihedral trick.

1 Introduction

Suppose that G is a multiplicative group of order v. A subset D of G consisting of k elements,
where 1 < k < v − 1 is a non trivial (v, k, λ) difference set if every non-identity element can be
replicated precisely λ times by the multi-set {d1d−1

2 : d1, d2 ∈ D, d1 ̸= d2}. The natural number
n = k−λ is known as the order of the difference set. The group structure determines the nature of
the difference set. For instance, if the underlying group G is abelian (resp. non abelian or cyclic,
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then D is abelian (resp. non abelian or cyclic) difference set . The study of Difference sets integrates
various techniques ranging from algebraic number theory to geometry, algebra and combinatorics
[1]. The readers are referred to [2, 3, 4, 5, 6] for more detailed results on difference sets. This paper
uses Turyn’s self conjugacy approach [7] to study a class of (v, k, λ) difference sets with n = m2 in
groups of order v = (4t− 1)s, where s > 1 and t > 1 are positive integers. We use the existence of
Paley-Hadamard (4t− 1, 2t− 1, t− 1) difference sets to look for cases where the ideal generated by
m2 has two factors in Z[ζ4t−1], that is ⟨m2⟩ = ⟨δ⟩⟨δ̄⟩, but the algebraic equation δδ̄ = m2 has trivial
solutions δ = ±mζj4t−1. This assumption along with Dillon dihedral trick [8] and Sylow Theorems
provide sufficient information necessary to decide the non-existence of the difference sets in some
or all groups of order v. Paley-Hadamard difference sets exist(in abundance) in that they exist
whenever (4t − 1) ≡ 3 mod 4 and 4t − 1 is a prime power[3]. We illustrate with examples where
2 ≤ m ≤ 45. This idea is based on the results of [9] and personal communication with Professor
Ken W. Smith.

Section 2 gives a brief description of some basic results which include materials from group theory,
representation and algebraic number theories. Section 3 lists some difference sets parameters that
do not exist and gives examples of partial results of non-existence of difference sets in groups of
order v.

2 Preliminaries

2.1 Difference sets

Let Z be the ring of integers and C be the field of complex numbers. Suppose that G is a
multiplicative group of order v and D is a (v, k, λ) difference set in G. We sometimes view the
elements of D as members of the group ring Z[G], which is a subring of the group algebra C[G].
Thus, D represents both subset of G and element

∑
g∈D g of Z[G]. The sum of inverses of elements

of D is D(−1) =
∑

g∈D g
−1. Consequently, D is a difference set if and only if

DD(−1) = n+ λG andDG = kG. (2.1)

Suppose that D is a difference set in a group G of order v and N is a normal subgroup of G. Suppose
that ψ : G −→ G/N is a homomorphism. We can extend ψ by linearity, to the corresponding group
rings. Thus, the difference set image in G/N is the multi-set D/N = ψ(D) = {dN : d ∈ D}. Let
T ∗ = {1, t1, . . . , th} be a left transversal of N in G. We can write ψ(D) =

∑
tj∈T∗ djtjN , where

the integer dj = |D ∩ tjN | is known as the intersection number of D with respect to N. In this
work, we shall always use the notation D̂ for ψ(D).

2.2 Basic representation and algebraic number theories

A C- representation of G is a homomorphism, χ : G → GL(d,C), where GL(d,C) is the group of
invertible d× d matrices over C. The positive integer d is the degree of χ. A linear representation
(character) is a representation of degree one. The set of all linear representations of G is denoted
by G∗. G∗ is an abelian group under multiplication and if G′ is the derived group of G, then

G∗ is isomorphic to G/G′[10]. Define ζm′ := e
2π
m′ i to be a primitive m′-th root of unity and

Km′ := Q(ζm′) to be the cyclotomic extension of the field of rational numbers, Q, where m′ is the
exponent of G. Without loss of generality, we may replace C by the field Km′ . Thus, the central
primitive idempotents in C[G] is

eχi =
χi(1)

|G|
∑
g∈G

χi(g)g
−1 =

1

|G|
∑
g∈G

χi(g)g, (2.2)
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where χi is an irreducible character of G[11].

Aliases are members of group ring which enable us to transfer information from C[G] to group
algebra Q[G] and then to Z[G]. Let G be an abelian group and Ω = {χ1, χ2, . . . , χh}, be the set
of characters of G. The element β ∈ Z[G] is known as Ω-alias if for A ∈ Z[G] and all χi ∈ Ω,
χi(A) = χi(β). Since A =

∑
χ∈G∗ χ(A)eχ, we can replace the occurrence of χ(A), which is a

complex number by Ω-alias, β, an element of Z[G]. Furthermore, two characters of G are algebraic
conjugate if and only if they have the same kernel and we denote the set of equivalence classes of
G∗ by G∗/ ∼. The central rational idempotents in Q[G] are obtained by summing over the
equivalence classes Xi = {eχi |χi ∼ χj} ∈ G∗/ ∼ on the eχ’s under the action of the Galois group
of Km′ over Q. That is, [eχi ] =

∑
eχj

∈Xi
eχj , i = 1, . . . , s. The following is the general formula

employed in the search of difference set [12]

Theorem 2.1. Let G be an abelian group and G∗/ ∼ be the set of equivalence classes of characters.
Suppose that {χ0, χ1, . . . , χs} is a system of distinct representatives for the equivalence classes of
G∗/ ∼. Then for A ∈ Z[G], we have

A =

s∑
i=0

αi[eχi ], (2.3)

where αi is any χi-alias for A.

Equation 2.3 is known as the rational idempotent decomposition of A.

Suppose that χ is any non-trivial representation of degree d and χ(D̂) ∈ Z[ζ], where ζ is the primitive
root of unity. Suppose that x ∈ G is a non identity element. Then, χ(xG) = χ(x)χ(G) = χ(G).
This shows that (χ(x)−1)χ(G) = 0. Since x is not an identity element, (χ(x)−1) ̸= 0 and χ(G) = 0
(Z[ζ] is an integral domain). Consequently, χ(D)χ(D) = n · Id + λχ(G) = n · Id, where Id is the
d × d identity matrix. Furthermore, if χ is a non-trivial representation of G/N of degree d then

D̂D̂(−1) = n · 1G/N + |N |λ(G/N) and χ(D̂)χ(D̂) = n · Id.

Recall that the ring of integers of the cyclotomic field Q[ζm′ ] is Z[ζm′ ]. This ring is also an integral
domain. Let p, a, b ∈ Z[ζm′ ]. The number p is irreducible if p = ab implies one of a or b is a unit.
The element p is prime if p|ab implies p|a or p|b [13]. A domain is a unique factorization domain
(UFD) if factorization into irreducibles is possible and unique. In UFD, the irreducibles are also
primes. In order to successfully obtain the difference set images, we need the aliases. Suppose that
G/N is an abelian factor group of exponent m′ and D̂ is a difference set image in G/N . If χ is

not a principal character of G/N , then χ(D̂)χ(D̂) = n is an algebraic equation in Z[ζm′ ]. The
determination of the alias requires the knowledge of how the ideal generated by χ(D̂) factors in
cyclotomic ring Z[ζm′ ], where ζm′ is the m′-th root of unity. If δ := χ(D̂), then by equation 2.3,
we seek α ∈ Z[G/N ] such that χ(α) = δ. The task of solving the algebraic equation δδ̄ = n is
sometimes made easier if we consider the factorization of principal ideals ⟨δ⟩⟨δ̄⟩ = ⟨n⟩. Suppose we

are able to find δ =
∑ϕ(m′)−1

i=0 diζ
i
m′ ∈ Z[ζm′ ] such that δδ̄ = n, where ϕ is the Euler ϕ-function.

A theorem due to Kronecker [5, 14] states that any algebraic integer all whose conjugates have
absolute value 1 must be a root of unity. We use this theorem to characterize the solutions. If there
is any other solution to the algebraic equation, then it must be of the form δ′ = δu [15], where
u = ±ζjm′ is a unit.

The following result is used to determine the number of factors of an ideal in a ring: Suppose p
is any prime and m′ is an integer such that gcd (p,m′) = 1. Suppose that d is the order of p in
the multiplicative group Z∗

m′ of the modular number ring Zm′ . Then the number of prime ideal

factors of the principal ideal ⟨p⟩ in the cyclotomic integer ring Z[ζm′ ] is ϕ(m′)
d

, where ϕ is the Euler
ϕ-function, i.e. ϕ(m′) = |Z∗

m′ | [16]. For instance, the ideal generated by 2 has two factors in Z[ζ7],
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the ideal generated by 7 has two factors in Z[ζ20], while the ideal generated by 3 has four factors in
Z[ζ40]. On the other hand, since 2s is a power of 2, the ideal generated by 2 is said to completely
ramifies as power of ⟨1− ζ2s⟩ = ⟨1− ζ2s⟩ in Z[ζ2s ].

According to Turyn [7], an integer n is said to be semi-primitive modulo m′ if for every prime
factor p of n, there is an integer i such that pi ≡ −1 (mod m′). In this case, −1 belongs to the
multiplicative group generated by p. Furthermore, n is self conjugate modulo m′ if every prime
divisor of n is semi primitive modulo m′

p, where m
′
p is the largest divisor of m′ relatively prime

to p. This means that every prime ideals over n in Z[ζm′ ] are fixed by complex conjugation. For
instance, 72 ≡ −1 (mod m′), where m′ = 2, 5, 10 and 7 ≡ −1 (mod m′), m′ = 2, 4, 8. Thus, ⟨7⟩ is
fixed by conjugation in Z[ζm′ ], m′ = 2, 4, 5, 8, 10, 50.

Remark 2.2. If ⟨n⟩ = Πs
i=1θi in cyclotomic ring Z[ζm′ ], where θi is an ideal and s is an odd integer,

then there is no solution to δδ̄ = n. To see this, assume that a δ exist such that ⟨δ⟩ = Πk
i=1αi.

Then ⟨n⟩ = ⟨δ⟩⟨δ̄⟩ has 2k factors but ⟨n⟩ has odd factors.

Remark 2.3. In order to verify the existence of (v, k, λ) difference set with n = k−λ = m2, where
v = (4t−1)s, and m is a positive integer, we need aliases of difference set images in C4t−1. Suppose
that (4t − 1) ≡ 3 mod 4 is a prime power, then (4t − 1, 2t − 1, t − 1) Paley-Hadamard difference
set exists. Let p be a prime divisor of m. We assume that at least one of the following is true:
⟨p⟩ is prime, ramifies or has two factors in the cyclotomic ring Z[ζ4t−1]. If ⟨p⟩ is prime or ramifies,
then we are done. We now look at the case where ⟨p⟩ has two factors. However, we claim that the
algebraic number p is prime in this ring. Since (4t − 1, 2t − 1, t − 1) difference sets exists, there

exists θ such that θθ̄ = t and θ + θ̄ = −1. This implies that θ2 + θ + t = 0 and θ = −1±
√

−4t+1
2

.
Consequently, θ ∈ Z[

√
−4t+ 1]. Since −4t + 1 ≡ 1 (mod 4)([13] chapter 3), the elements of the

integral basis of Z[
√
−4t+ 1] are 1 and 1+i

√
4t−1
2

and we seek a, b ∈ Z such that δ = a+bi
√

4t−1
2

and

δδ̄ = a2+(4t−1)b2

4
= p. Consequently, we seek a, b ∈ Z such that a2+(4t−1)b2

4
= m2. In this paper, we

look at the situation where this equation has trivial solutions (a, b) = (−2m, 0) and (2m, 0) for some
m and values of t listed in Table 1[17]. Hence, δ = ±a

2
= ±m. Since 2(4t − 1) ≡ 2 (mod 4)[14],

the above property is also valid in Z[ζ8t−2]. In general if q > 2 is a prime power such that the
ideal generated by p has two factors in Z[ζq(4t−1)], then the above property is also extendable to
Z[ζq(4t−1)].

There is a more sophisticated way to show the result of Remark 2.3. This will be illustrated with
the non existence of (496, 55, 6) difference sets[18]. The author will like to thank Professor Ken W.
Smith for his insight.

Remark 2.4. Let G be a group of order 496 and let N be a normal subgroup of G. In order to find
(496, 55, 6) difference sets in G/N ∼= C31, we need to solve the equation δδ̄ = 72 in the algebraic
integers of the cyclotomic field of 31st roots of unity to obtain the aliases. That is, we must find
all algebraic integers of length 7 in the ring of algebraic integers of this cyclotomic field. Suppose
that ζ31 is the primitive 31st root of unity and σ is the Galois automorphism of Q(ζ31) fixing Q
defined by σ(ζ31) = ζ731. We are interested in the factoring of ideal ⟨7⟩ and as 715 ≡ 1 mod 31, the
order of this map is 15 and it fixes any ideal over ⟨7⟩. The Galois automorphism of Q(ζ31) fixing
Q has order 30 and the number of ideals over ⟨7⟩ is exactly 30

15
= 2. That is, ⟨7⟩ = π1π2. As −1 is

not in the subgroup ⟨7⟩ of the group of units U(31), the conjugate map z 7→ z̄ is not in ⟨σ⟩. Thus,
the conjugate map must interchange π1 and π2. Consequently, there is a prime ideal π such that
⟨7⟩ = ππ̄. Suppose that ⟨δ⟩⟨δ⟩ = ⟨7⟩2. In order to find all solutions to the equation δδ̄ = 72, we need
to enumerate all possibilities such that π2−iπ̄i = 72 and i = 0, 1. Consequently, the two possible
choices of ⟨δ⟩ are: 1) ⟨δ⟩ = ⟨7⟩ = ππ̄, 2) ⟨δ⟩ = π2.
Case 1:
Suppose that ⟨δ⟩ = ⟨7⟩ = ππ̄, then δ = ±7u, where u is a root of unity. Thus, δ = ±7 is the solution
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to equation δδ̄ = 72.
Case 2:
Suppose that ⟨δ⟩ = π2, where ⟨δ⟩ = ⟨7⟩ = ππ̄. You will recall that the ideal ⟨δ⟩ is fixed by σ but there
is no reason to believe that same is true of δ. However, we can show that there is another element δ′

fixed σ such that by ⟨δ⟩ = ⟨δ′⟩. Since ⟨δ⟩ is fixed by σ then σ(δ) ∈ ⟨δ⟩. Thus, σ(δ) = δu, for some unit
u. Observe that both ⟨δ⟩ and σ(δ) satisfy δδ̄ = 72 and their conjugates have length 7. By a theorem
due to Kronecker, σ(δ) = ±ζjδ, for some j. For now, we ignore the sign and take σ(δ) = ζjδ.
Thus, we can solve for s in the equation σ(ζsδ) = ζsδ. It then follows that σ(ζsδ) = ζ7s+jδ and
consequently, 7s + j ≡ s mod 31 or 6s ≡ −j mod 31. Notice that the multiplicative inverse of 6
is −5 mod 31 and so s ≡ 5j mod 31. Hence, ζ5jδ is also fixed by σ and in the fixed field of σ.
However, if σ(δ) = −ζjδ then σ(ζ5jδ) = −ζ5jδ and so σ2(ζ5jδ) = ζ5jδ. This means that ζ5jδ is fixed
by σ2. But (σ2)8 = σ, which implies that an element fixed by σ2 is also fixed by σ. As a result of the
above, it follows that if ⟨δ⟩ = π2, then there is a root of unity u such that uδ is fixed by σ and thus, in
the fixed filed of ⟨σ⟩. But the Galois group ⟨σ⟩ has index two in the Galois group of Q(ζ31) fixing Q,
consequently, this fixed field is Q(

√
−31). The ring of algebraic integers in this extension is described

as
{
a+ b

(
1+

√
−31
2

)
: a, b ∈ Z

}
. The norm of the element a+ b

(
1+

√
−31
2

= (2a+b)+b
√

−31
2

in this ring

of integers is (2a+b)2+31b2

4
= 4a2+4ab+32b2

4
= a2 + ab+ 8b2. Since the objects of interest have length

49, the question now is what are the values of integers a and b such that a2+ab+8b2 = 49? Clearly,
the possible values of b are ±2, ±1 and 0. If b = ±2, then a2 − 2a − 17 = 0 or a2 + 2a − 17 = 0.
If b = ±1, then a2 − a − 41 = 0 or a2 + a − 41 = 0 and If b = 0, then a2 = 49. Out of these five
equations, only a2 = 49 has integer solutions ±7. This also means that δ = ±7u, where u is a root
of unity. Thus, we conclude that the only algebraic integers of length 7 are ±7.

In this paper, we shall use the phase m factors trivially in Z[ζm′ ] if the ideal generated by m is
prime or ramifies in Z[ζm′ ]; m is self conjugate modulo m′; the ideal generated by m has odd factors
or the algebraic equation δδ̄ = m2 has trivial solution. In summary, suppose that D̂ is the difference
set image of order n = m2 in the cyclic factor group G/N , where G/N is a group with exponent
m′. Suppose that m factors trivially in Z[ζm′ ] and χ is a non trivial representation of G/N . Then
χ(D̂) = ±mζim′ , ζm′ is the m′-th root of unity [14] and the corresponding alias is α = ±mxi, where
x is a generator of the factor group. Thus, by Theorem 2.1, the (v, k, λ) difference set image in
H = Cq = ⟨x : xq = 1⟩ is αH ±m, where q is prime and α = k+m

q
or α = k−m

q
.

2.3 Some attributes of difference set images in the subgroup of a
group

Dillon [8] proved the following results which will be used to obtain difference set images in dihedral
group of a certain order if the difference images in the cyclic group of same order are known.

Theorem 2.2 (Dillon Dihedral Trick). Let H be an abelian group and let G be the generalized
dihedral extension of H. That is, G = ⟨q,H : q2 = 1, qhq = h−1, ∀h ∈ H⟩. If G contains a
difference set, then so does every abelian group which contains H as a subgroup of index 2.

Corollary 2.5. If the cyclic group Z2m does not contain a (nontrivial) difference set, then neither
does the dihedral group of order 2m.

Remark 2.6. Suppose that H is a group of order 2h with a central involution z. We take T =
{ti : i = 1, . . . , h} to be the transversal of ⟨z⟩ in H so that every element in H is viewed as
tiz

j , 0 ≤ i ≤ h, j = 0, 1. Denote the set of all integral combinations,
∑h

i=1 aiti of elements of
T, ai ∈ Z by Z[T ]. Using the two representations of subgroup ⟨z⟩ and Frobenius reciprocity theorem
[11], we may write any element X of the group ring Z[H] in the form

X = X

(
1 + z

2

)
+X

(
1− z

2

)
. (2.4)

5
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Table 1. Parameter sets where the equation δδ̄ = n has trivial solution

(4t− 1, 2t− 1, t− 1) k − λ = t (4t− 1, 2t− 1, t− 1) k − λ = t

1 (19, 9, 4) 5 16 (151, 75, 37) 38

2 (23, 11, 5) 6 17 (167, 83, 41) 42

3 (31, 15, 7) 8 18 (191, 95, 47) 48

4 (43, 21, 10) 11 19 (199, 97, 49) 50

5 (47, 23, 11) 12 20 (211, 105, 52) 53

6 (59, 29, 14) 15 21 (223, 111, 55) 56

7 (67, 33, 16) 17 22 (331, 165, 82) 83

8 (71, 35, 17) 18 23 (359, 179, 89) 90

9 (79, 39, 19) 20 24 (383, 191, 95) 96

10 (83, 41, 20) 21 25 (439, 219, 109) 110

11 (103, 51, 25) 26 26 (463, 231, 115) 116

12 (107, 53, 26) 27 27 (467, 233, 116) 117

13 (127, 63, 31) 32 28 (563, 281, 140) 141

14 (131, 65, 32) 33 29 (839, 419, 209) 210

15 (139, 69, 34) 35 30 (991, 495, 247) 248

Furthermore, let A be the group ring element created by replacing every occurrence of z in X by 1.
Also, let B be the group ring element created by replacing every occurrence of z in H by −1. Then

X = A

(
⟨z⟩
2

)
+B

(
2− ⟨z⟩

2

)
, (2.5)

where A =
∑h

i=1 aiti and B =
∑h

j=1 bjtj , ai, bj ∈ Z. As X ∈ Z[H], A and B are both in Z[T ] and
A ≡ B (mod 2). We may equate A with the homomorphic image of X in G/⟨z⟩. Consequently, if
X is a difference set, then the coefficients of ti in the expression for A will be intersection number
of X in the coset ⟨z⟩[19]. In particular, it can be shown that if K is a subgroup of a group H such
that

H ∼= K × ⟨z⟩, (2.6)

then the difference set image in H is

D̂ = A

(
⟨z⟩
2

)
+ gB

(
2− ⟨z⟩

2

)
, (2.7)

where g ∈ H, A is a difference set in K, α = k+m
|K| or α = k−m

|K| , B = A − αK and k is the size of

the difference set. The equation 2.7 is true as long as |K| | (k +m) or |K| | (k −m) [19].

2.4 Putting some results together

In this paper, we study (v, k, λ) difference sets in which n = k − λ = m2 and the ideal generated
by m factors trivially in the cyclotomic ring Z[ζm′ ]. That is, if n = m2, then (n) = (m)(m) up
to units in Z[ζm′ ]. This method is very useful in the investigation of difference sets in solvable
groups. A group G is solvable if the sequence G ⊇ G′ ⊇ G′′ . . . ⊇ . . . ⊇ G(i) . . . terminates in
the identity, G(e) = 1, in a finite number of steps, each G(i) is the derived group of the preceding
one[10]. Consequently, each i, the factor group G(i)/G(i+1) is Abelian. We refer readers to the
extended Sylow theorem in solvable groups ([10], page 141).

The next three criteria enable us to rule out the existence of difference sets.

6
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Criterion 2.7. Suppose that G is a group of order v = (4t− 1)s, where s and t are integers. Then
G does not admit (v, k, λ) if there exists a normal subgroup N of G such that

1. k − λ = m2, m is a natural number,

2. |G/N | = 4t− 1

3. m factors trivially in the cyclotomic ring Z[ζ4t−1], where ζ4t−1 is the (4t−1)-th root of unity,

4. the difference set solution inG/N is one of the forms α(G/N)+m, α+m > |N | or α(G/N)−m,
α < m.

Proof: The non existence of viable difference set image in G/N implies that G does not admit
(v, k, λ) difference set �.

In this criterion, we may replace |G/N | = 4t−1 with |G/N | = q(4t−1) if q > 2 is prime power, q|s,
gcd (4t− 1, q) = 1 and the ideal generated by p has two factors in Z[ζq(4t−1)], where p is a prime
divisor of m(See Remark 2.3).

Criterion 2.8. Suppose that G is a group of even order v and H is a factor group of G with
|H| = 2q, where q is prime. Let g be an element of order 2 in H. Then G does not admit (v, k, λ) if

1. k − λ = m2, m is a natural number,

2. m factors trivially in the cyclotomic rings Z[ζq], where ζq is q-th root of unity,

3. the difference set solution in H/⟨g⟩ is one of the forms α(H/⟨g⟩) +m, α+m > |G/(H/⟨g⟩)|
or α(H/⟨g⟩) − m, α < m ;alternatively, the difference set image in H is one of the forms
α(H) +m, α+m > |G/H| or α(H)−m, α < m.

Proof:See [9] �.

Criterion 2.9. Suppose that G is a group of order v = 22 × q× s, where q ≥ 3 is prime and s is an
integer. Suppose that H is a factor group of G of order 2q. The group G does not admit (v, k, λ)
difference set if there exists a normal subgroup N such that G/N ∼= H × C2 and

1. k − λ = m2, m is a natural number,

2. every prime divisor m′ of m factors trivially in the cyclotomic rings Z[ζq], where ζq is q-th
root of unity, gcd (m′, q) = 1

3. the difference set solution in H is of the form αH +m, and α is an odd integer or

4. the difference set solution in H is of the form αH −m, α is an even integer, m is odd an odd
integer and m > α

2

Proof: See [9] �.

Notice that there are five factor groups of order 22 × q if q ≡ 1 (mod 4) and four factor groups if
q ≡ 3 (mod 4). Criterion 2.10 rules out the existence of difference set images in Cq × C2 × C2 and
D2q

∼= Dq × C2. In addition to conditions of Criterion 2.10, if m factors trivially also in Z[ζ22×q],
then three of the four or five factor groups (C2q, Cq × C2 × C2 and D2q) of order 22 × q do not
admit difference sets.

3 Non-existence of Some Difference Sets Parameters

In this section, we list some parameter sets (both known and new) that do not exist. In each of
these cases, G is a group of order v and φ : G → H is a group homomorphism. Suppose that
D is a k-subset of G and n = k − λ = m2 such that m factors trivially in the cyclotomic ring
Z[ζ|H|]. We use Criteria 2.7., 2.8., 2.9 to rule out the existence of (v, k, λ) difference set. Examples
of such parameters are listed in Tables 3 and 5. We also listed partial results in Tables 2,7 and 9. ∗

7
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indicates new results while ∗∗ indicates |G/N | = q(4t− 1), q > 2 is prime power. ∗ ∗ ∗ refers to the
result from [18]. GAP[20] was used to determine the number of groups of order v and the number
of groups ruled out.

Table 2. Partial results in groups of order v by Criterion 2.7. C|G/N| = ⟨x⟩. The
symbol ? means the number of groups of order v is unknown

(v, k, λ) m p |G/N | No. of No. of Solutions
groups groups in G/N

of ruled
order v out

1∗, ∗∗ (3726, 150, 6) 12 2, 3 207 ? ? None

2 (13135, 199, 3) 14 2, 7 71 2 1 −14 + 3⟨x⟩
3∗ (54003, 403, 3) 20 2, 5 47 ? ? −20 + 9⟨x⟩
4∗ (4042, 450, 50) 20 2, 5 47 4 2 −20 + 10⟨x⟩
5∗ (65565, 444, 3) 21 3, 5 31 ? ? −21 + 15⟨x⟩
6 (6461, 476, 35) 21 3, 5 71 2 1 −21 + 7⟨x⟩
7∗ (3479, 518, 77) 21 3, 5 497 4 2 21 + ⟨x⟩

8∗, ∗∗ (234741, 485, 1) 22 2, 11 1389 ? ? None

9∗ (79255, 630, 5) 25 5 131 ? ? −25 + 5⟨x⟩
10∗ (9423, 673, 48) 25 5 493 13 5 −25 + 2⟨x⟩
11∗ (77408, 682, 6) 26 2, 13 59 ? ? −26 + 12⟨x⟩
12 (31787, 691, 15) 26 2, 13 239 2 1 −26 + 3⟨x⟩
13 (6015, 776, 100) 26 2, 13 401 2 1 −26 + 2⟨x⟩
14∗ (4221, 845, 169) 26 2, 13 67 11 4 −26 + 13⟨x⟩
15∗ (266816, 731, 2) 27 3 379 ? ? −27 + 2⟨x⟩
16∗ (67805, 737, 8) 27 3 191 7 2 −27 + 4⟨x⟩
17∗ (11716, 781, 52) 27 3 101 15 11 −27 + 8⟨x⟩
18∗ (8340, 807, 78) 27 3 139 41 29 −27 + 6⟨x⟩
18∗ (6111, 846, 117) 27 3 97 11 4 −27 + 9⟨x⟩
19∗ (3015, 1233, 504) 27 3 67 4 2 −27 + 18⟨x⟩

20∗,∗∗ (2961, 1296, 567) 27 3 329 4 2 None

21∗ (615441, 785, 1) 28 2, 7 271 5 2 −28 + 3⟨x⟩
22 (69785, 793, 9) 28 2, 7 821 2 1 −28 + ⟨x⟩
23∗ (52736, 796, 12) 28 2, 7 103 ? ? −28 + 8⟨x⟩
24 (14145, 833, 49) 28 2, 7 41 2 1 −28 + 21⟨x⟩
24∗ (12990, 838, 54) 28 2, 7 433 9 8 −28 + 2⟨x⟩

25∗,∗∗ (3355, 1248, 464) 28 2, 7 305 7 5 28 + 4⟨x⟩
26∗,∗∗ (142975, 846, 5) 29 29 215 ? ? None

27∗ (102609, 848, 7) 29 29 877 ? ? −29 + ⟨x⟩
28∗,∗∗ (8515, 946, 105) 29 29 655 4 1 None

8
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Table 3. Parameter sets that do not exist by Criterion 2.7. C|G/N| = ⟨x⟩

(v, k, λ) m p |G/N | No. of Solutions
groups in G/N

of
order v

1 (115, 19, 3) 4 2 23 1 −4 + ⟨x⟩
2 (391, 40, 4) 6 2, 3 23 1 −6 + 2⟨x⟩
3 (885, 52, 3) 7 7 59 1 −7 + ⟨x⟩

4∗,∗∗ (1475, 67, 3) 8 2 295 2 None

5 (345, 129, 48) 9 3 23 1 −9 + 6⟨x⟩
6∗,∗∗ (2679, 104, 4) 10 2, 5 141 2 None

7∗ (2185, 105, 5) 10 2, 5 23 1 −10 + 5⟨x⟩
8∗,∗∗ (621, 125, 25) 10 2, 5 69 5 None

9∗∗ (483, 241, 120) 11 11 69 1 None

10∗,∗∗ (2585, 153, 9) 12 2, 3 235 2 None

11 (2171, 155, 11) 12 2, 3 167 1 −12 + ⟨x⟩
12 (581, 261, 117) 12 2, 3 83 1 12 + 3⟨x⟩

13∗,∗∗ (575, 285, 143) 12 2, 3 115 2 None

14 (2323, 216, 20) 14 2, 7 23 1 −14 + 10⟨x⟩
15 (1411, 235, 39) 14 2, 7 83 1 −14 + 3⟨x⟩

16∗,∗∗ (1179, 248, 52) 14 2, 7 131 2 −14 + 2⟨x⟩
17 (6059, 234, 9) 15 3, 5 83 1 −15 + 3⟨x⟩
18∗ (1035, 330, 105) 15 3, 5 69 2 −15 + 5⟨x⟩
19 (913, 400, 175) 15 3, 5 83 1 −15 + 5⟨x⟩
20∗ (28325, 292, 3) 17 17 103 4 −17 + 3⟨x⟩
21∗ (35535, 327, 3) 18 2, 3 23 2 −18 + 5⟨x⟩
22 (9381, 336, 12) 18 2, 3 59 1 −18 + 6⟨x⟩
23 (6821, 341, 17) 18 2, 3 359 1 −18 + ⟨x⟩
24∗ (2751, 375, 51) 18 2, 3 131 2 −18 + 3⟨x⟩
25 (2011, 400, 76) 18 2, 3 191 1 18 + 2⟨x⟩
26 (2021, 405, 81) 18 2, 3 47 1 −18 + 9⟨x⟩
27 (9401, 376, 15) 19 19 79 1 −19 + 5⟨x⟩
28 (44045, 364, 3) 19 19 383 1 −19 + ⟨x⟩
29∗ (2575, 495, 95) 20 2, 5 103 2 −20 + 5⟨x⟩
30 (1645, 685, 285) 20 2, 5 47 1 −20 + 15⟨x⟩
31∗ (1611, 736, 336) 20 2, 5 179 2 20 + 4⟨x⟩
32 (39695, 446, 5) 21 3, 5 467 1 −21 + ⟨x⟩
33 (25145, 449, 8) 21 3, 5 47 1 −21 + 10⟨x⟩
34 (5573, 481, 40) 21 3, 5 251 1 −21 + 2⟨x⟩
35 (4465, 496, 55) 21 3, 5 47 1 −21 + 11⟨x⟩
36 (1781, 801, 360) 21 3, 5 137 1 −21 + 6⟨x⟩
37 (22231, 495, 11) 22 2, 11 47 1 −22 + 11⟨x⟩
38 (26461, 540, 11) 23 23 563 1 −23 + ⟨x⟩
39 (6391, 640, 64) 24 2, 3 83 1 −24 + 8⟨x⟩
40 (153455, 679, 3) 26 2, 13 47 1 −26 + 15⟨x⟩

9
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Table 4. Table 3 continued

(v, k, λ) m p |G/N | No. of Solutions

groups in G/N
of

order v

41∗ (115431, 680, 4) 26 2, 13 353 2 −26 + 2⟨x⟩
42 (92617, 681, 5) 26 2, 13 101 1 −26 + 7⟨x⟩
43 (52061, 685, 9) 26 2, 13 79 1 −26 + 9⟨x⟩
44∗ (14063, 712, 36) 26 2, 13 41 5 −26 + 18⟨x⟩
45 (11537, 721, 45) 26 2, 13 83 1 −26 + 9⟨x⟩
46 (8437, 741, 65) 26 2, 13 59 1 −26 + 13⟨x⟩
47∗ (7511, 751, 75) 26 2, 13 37 2 −26 + 21⟨x⟩
48 (3173, 976, 300) 26 2, 13 167 1 −26 + 6⟨x⟩

49∗,∗∗ (4067, 856, 180) 26 2, 13 581 2 None

50∗ (42295, 742, 13) 27 3 769 2 −27 + ⟨x⟩
51∗ (15105, 768, 39) 27 3 53 2 −27 + 15⟨x⟩
52∗ (6665, 833, 104) 27 3 43 2 −27 + 20⟨x⟩
53∗ (3471, 1041, 312) 27 3 89 2 −27 + 12⟨x⟩

54∗,∗∗ (2915, 1457, 728) 27 3 265 2 None

55∗ (206195, 787, 3) 28 2, 7 163 3 −28 + 5⟨x⟩
56∗ (103886, 790, 6) 28 2, 7 409 4 −28 + 2⟨x⟩
57∗ (24331, 811, 27) 28 2, 7 839 1 −28 + ⟨x⟩
58∗ (16226, 826, 42) 28 2, 7 61 8 −28 + 14⟨x⟩

59 (14405, 832, 48) 28 2, 7 43 1 −28 + 20⟨x⟩

60∗ (5975, 928, 144) 28 2, 7 239 2 −28 + 4⟨x⟩

61 (5891, 931, 147) 28 2, 7 137 1 −28 + 7⟨x⟩

62∗,∗∗ (5005, 973, 189) 28 2, 7 65 2 None

63 (4795, 987, 203) 28 2, 7 685 1 None

64 (3401, 1225, 441) 28 2, 7 179 1 −28 + 7⟨x⟩

65∗ (89995, 849, 8) 29 29 439 2 −29 + 2⟨x⟩

66∗ (48793, 856, 15) 29 29 59 2 −29 + 15⟨x⟩

67 (14353, 897, 56) 29 29 463 1 −29 + 2⟨x⟩

68 (9889, 928, 87) 29 29 341 1 None

69∗∗ (7689, 961, 120) 29 29 699 1 None

70∗ (4485, 1121, 280) 29 29 69 2 None

10
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Table 5. Parameter sets that do not exist by Criterion.2.8. C|H| = ⟨x, y : xq = y2 = [x, y]⟩

(v, k, λ) m p |H| No. of Solutions

groups in H
of

order v

1∗∗∗ (496, 55, 6) 7 7 62 42 −7 + 2⟨x⟩
in H/⟨g⟩

2∗ (711, 71, 7) 8 2 79 4 −8 + ⟨x⟩
in H/⟨g⟩

3∗ (430, 78, 14) 8 2 86 4 −8 + 2⟨x⟩
in H/⟨g⟩

4∗ (3404, 83, 2) 9 3 46 11 −9 + 4⟨x⟩
in H/⟨g⟩

5∗ (1786, 85, 4) 9 3 94 4 −9 + 2⟨x⟩
in H/⟨g⟩

6∗ (2668, 127, 6) 11 11 46 11 −11 + 6⟨x⟩
in H/⟨g⟩

7∗ (10586, 146, 2) 12 2, 3 158 4 −12 + 2⟨x⟩
in H/⟨g⟩

8∗ (1106, 170, 26) 12 2, 3 158 4 12 + 2⟨x⟩
in H/⟨g⟩

9∗ (590, 248, 104) 12 2, 3 118 4 12 + 4⟨x⟩
in H/⟨g⟩

10∗ (1888, 222, 26) 14 2, 7 118 195 −14 + 4⟨x⟩
in H/⟨g⟩

11∗ (1886, 261, 36) 15 3,5 46 4 −15 + 12⟨x⟩
in H/⟨g⟩

12∗ (1692, 267, 42) 15 3,5 94 30 −15 + 6⟨x⟩
in H/⟨g⟩

13∗ (1222, 297, 72) 15 3,5 94 4 15 + 3H

14∗ (7050, 266, 10) 16 2 94 26 −16 + 6⟨x⟩
in H/⟨g⟩

15∗ (1128, 392, 136) 16 2 94 39 16 + 4H

16∗ (1770, 610, 210) 20 2, 5 118 8 20 + 5H

17∗ (2140, 621, 180) 21 3,7 214 11 −21 + 6⟨x⟩
in H/⟨g⟩

11
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Table 6. Table 5 continued: Parameter sets that do not exist by Criterion 2.8.
C|H| = ⟨x, y : xq = y2 = [x, y]⟩

(v, k, λ) m p |H| No. of Solutions

groups in H
of

order v

18∗ (2068, 637, 196) 21 3,7 94 9 −21 + 14⟨x⟩
in H/⟨g⟩

19∗ (1984, 661, 220) 21 3,7 62 1388 −21 + 11H

20∗ (19570, 594, 18) 24 2, 3 206 8 −24 + 6⟨x⟩
in H/⟨g⟩

21∗ (11534, 608, 32) 24 2, 3 158 4 −24 + 8⟨x⟩
in H/⟨g⟩

22∗ (4922, 666, 90) 24 2, 3 214 4 24 + 3H

23∗ (2822, 806, 230) 24 2, 3 166 4 −24 + 10⟨x⟩
in H/⟨g⟩

24∗ (2338, 1026, 450) 24 2, 3 167 4 −24 + 6⟨x⟩
in H/⟨g⟩

25∗ (4544, 826, 150) 26 2, 13 71 1387 −26 + 12⟨x⟩
in H/⟨g⟩

26∗ (134140, 733, 4) 27 3 38 ? −27 + 20H

27∗ (4556, 911, 182) 27 3 134 11 −27 + 14⟨x⟩
in H/⟨g⟩

28∗ (45430, 798, 14) 28 2, 7 118 24 −28 + 14⟨x⟩
in H/⟨g⟩

29∗ (35690, 802, 18) 28 2, 7 166 8 −28 + 10⟨x⟩
in H/⟨g⟩

30∗ (6566, 910, 126) 28 2, 7 134 10 −28 + 14⟨x⟩
in H/⟨g⟩

31∗ (4626, 1000, 216) 28 2, 7 514 10 −28 + 4⟨x⟩
in H/⟨g⟩

32∗ (3950, 1078, 294) 28 2, 7 158 10 −28 + 14⟨x⟩
in H/⟨g⟩

33∗ (3486, 1190, 406) 28 2, 7 166 10 28 + 7H

34∗ (178296, 845, 4) 29 29 184 ? None

35∗ (18544, 883, 42) 29 29 38 ? −29 + 24H

36∗ (13516, 901, 60) 29 29 62 11 −29 + 15H

37∗ (11844, 911, 70) 29 29 94 111 −29 + 20H

12
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Table 7. Partial results in groups of order v by Criterion 2.8.
C|H| = ⟨x, y : xq = y2 = [x, y]⟩. ? means the number of groups of order v is unknown

(v, k, λ) m p |H| No. of No. of Solutions
groups groups in H

of ruled
order v out

1∗ (14536, 171, 2) 13 13 46 ? ? −13 + 8⟨x⟩
in H/⟨g⟩

2∗ (5964, 268, 12) 16 2 142 44 34 −16 + 5⟨x⟩
in H/⟨g⟩

3∗ (2718, 286, 30) 16 2 302 16 10 −16 + 2⟨x⟩
in H/⟨g⟩

4∗ (52976, 326, 2) 18 2, 3 86 ? ? −18 + 8⟨x⟩
in H/⟨g⟩

5∗ (3760, 358, 34) 18 2, 3 94 ? ? −18 + 8⟨x⟩
in H/⟨g⟩

6∗ (5336, 485, 44) 21 3, 7 46 ? ? −21 + 11⟨x⟩⟨y⟩
7∗ (3128, 531, 90) 21 3, 7 46 ? ? −21 + 12⟨x⟩⟨y⟩
8∗ (2484, 573, 132) 21 3, 7 138 ? ? 21 + 4⟨x⟩⟨y⟩
9∗ (117856, 486, 2) 22 2, 11 254 ? ? −22 + 4⟨x⟩

in H/⟨g⟩
10∗ (6576, 526, 42) 22 2, 11 274 ? ? −22 + 4⟨x⟩

in H/⟨g⟩
11∗ (5372, 656, 80) 24 2, 3 316 11 8 24 + 2⟨x⟩⟨y⟩
12∗ (98754, 629, 4) 25 5 906 24 12 None

13∗ (33762, 637, 12) 25 5 662 12 8 −25 + 2⟨x⟩
in H/⟨g⟩

14∗ (10528, 726, 50) 26 2, 13 94 ? ? −26 + 16⟨x⟩
in H/⟨g⟩

15∗ (89916, 735, 6) 27 3 254 ? ? −27 + 6⟨x⟩
in H/⟨g⟩

16∗ (30960, 747, 18) 27 3 86 ? ? −27 + 18⟨x⟩
in H/⟨g⟩

17∗ (21896, 755, 26) 27 3 34 ? ? −27 + 23H

18∗ (21896, 755, 26) 27 3 46 ? ? −27 + 17H

19∗ (14136, 771, 42) 27 3 38 ? ? −27 + 21H

20∗ (5016, 885, 156) 27 3 38 ? ? −27 + 24H

16∗ (12976, 1275, 546) 27 3 62 ? ? −27 + 21⟨x⟩
in H/⟨g⟩

17∗ (78310, 792, 8) 28 2, 7 82 32 12 −28 + 20⟨x⟩
in H/⟨g⟩

18∗ (18656, 820, 36) 28 2, 7 106 ? ? −28 + 16⟨x⟩
in H/⟨g⟩

19∗ (3526, 1176, 392) 28 2, 7 82 or 86 4 3 None

20∗,∗∗ (3290, 1288, 504) 28 2, 7 470 8 4 None

13
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Table 8. Table 7 continued.

(v, k, λ) m p |H| No. of No. of Solutions
groups groups in H

of ruled
order v out

21∗ (37024, 861, 20) 29 29 178 ? ? −29 + 10⟨x⟩
in H/⟨g⟩

22∗ (26940, 869, 28) 29 29 898 37 27 −29 + 2⟨x⟩
in H/⟨g⟩

23∗ (10176, 925, 84) 29 29 106 ? ? −29 + 18⟨x⟩
in H/⟨g⟩

24∗ (6868, 981, 140) 29 29 202 15 11 −29 + 10⟨x⟩
in H/⟨g⟩

25∗ (3784, 1261, 420) 29 29 86 ? ? −29 + 15H

Table 9. Partial results in groups of order v by Criterion 2.9. ? means the number of
groups of order v is unknown

14
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Table 10. Table 9 continued

(v, k, λ) m p No. of No. of Solutions
groups groups in H

of ruled
order v out

18∗ (3960, 963, 234) 27 3 ? ? −27 + 99H,
|H| = 10

19∗ (3816, 981, 252) 27 3 ? ? 27 + 9H,
|H| = 106

20∗ (3420, 1053, 324) 27 3 144 68 27 + 27H,
|H| = 38

21∗ (3280, 1093, 364) 27 3 ? ? 27 + 13H,
|H| = 82

22∗ (3060, 1197, 468) 27 3 113 50 27 + 117H,
|H| = 10

23∗ (3060, 1197, 468) 27 3 113 68 −27 + 36H,
|H| = 34

24∗ (3036, 1215, 486) 27 3 34 19 −27 + 27H,
|H| = 46

25∗ (119428, 847, 6) 29 29 ? ? 29 +H,
|H| = 818

26∗ (72336, 851, 10) 29 29 ? ? 29 + 3H,
|H| = 274

27∗ (52156, 855, 14) 29 29 ? ? 29 + 7H,
|H| = 118

28∗ (25260, 871, 30) 29 29 71 15 29 +H,
|H| = 842

29∗ (18544, 883, 42) 29 29 ? ? 29 + 7H,
|H| = 122

30∗ (13920, 899, 58) 29 29 ? ? 29 + 87H,
|H| = 10

31∗ (7888, 957, 116) 29 29 ? ? −29 + 29H,
|H| = 34

32∗ (5916, 1015, 174) 29 29 36 21 29 + 29H,
|H| = 34

33∗ (5256, 1051, 210) 29 29 ? ? 29 + 7H,
|H| = 146

34∗ (4408, 1131, 290) 29 29 ? ? 29 + 29H,
|H| = 38

35∗ (3828, 1247, 406) 29 29 28 15 29 + 203H,
|H| = 6

36∗ (3480, 1421, 580) 29 29 ? ? −29 + 145H,
|H| = 10

15
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4 Conclusion

This paper shows that Turyn’s self conjugacy can be combined with Dillon dihedral trick and Sylow
Theorems to establish the non existence of (v, k, λ) difference sets with n = m2 in groups of order
v = (4t− 1)s, where m > 1, s > 1 and t > 1 are positive integers.
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