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Abstract

We consider piecewise defined differential dynamical systems which can be analysed through
symbolic dynamics and transition matrices.
We have a continuous regime, where the time flow is characterized by an ordinary differential
equation (ODE) which has explicit solutions, and the singular regime, where the time flow is
characterized by an appropriate transformation.
The symbolic codification is given through the association of a symbol for each distinct
regular system and singular system. The transition matrices are then determined as linear
approximations to the symbolic dynamics. We analyse the dependence on initial conditions,
parameter variation and the occurrence of global strange attractors.
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1 Introduction

Piecewise linear dynamics may be used to study several mechanical systems such as gear box
and rotor-bearing systems. For many years, the dynamics of gears has been of great interest to
improve transmission and to reduce machinery noise. Although, in the initial phase, the linear
vibration model developed provides a good prediction of gear vibration at low speeds, owing to
high speed requirement in this type of systems, the linear vibration model is no longer adequate.
So, in recent decades, with the aim of finding the origin of the vibration and noise, the piecewise
linear model and the impact model were developed. In the literature, we find several models
considering the piecewise linear system to describe engineering vibrations, such as vibration in gear
box, rotor-bearing and elasto-plastic structures (see [1]). For example, in 1983, Shaw and Holmes
[2] investigated a piecewise linear system with a single discontinuity using the mapping technique.
More recently, Luo and Chen [1] presented an idealized piecewise linear system with impacts to
model the vibration of gear transmission systems, which was investigated analytically through the
corresponding mapping structures. Moreover, piecewise linear systems, on one hand have explicit
solutions, since involves linear differential equations, on the other hand can be used to study chaotic
nonlinear systems, through the methods we explain below.

In this paper, we consider a forced damped piecewise oscillator whose motion is modeled by the
second-order non-autonomous differential equation

x′′ + α x′ + g(x) = F cos(ωt), (1.1)

where α is the damping coefficient, F is the forcing amplitude, ω is the forcing frequency and g
is a linear piecewise function. Therefore, we have a continuous regime, where the time flow is
characterized by the explicit solutions of the ordinary differential equations, and a singular regime,
where the time flow is characterized by an appropriate transformation. In the continuous regime,
we have in fact a linear regime. The phase space is partitioned in these continuous regimes, and
in each set of the partition the system has a unique explicit solution, since the ODE is linear in
each part. When the system is in a singular regime it changes to another region of the partition,
entering again in a continuous regime. This method allow us to study a nonlinear system with
very complex behaviour such as (1.1). Our differential dynamical system will be studied by making
use of symbolic dynamics and transition matrices, with similar techniques as the ones applied in
[3]. The behaviour of the system, depending on the parameters, is simple, periodic or chaotic.
Moreover in certain regions of the parameters there are sensitivity to the initial conditions and
sensitivity to parameter perturbation. Numerical simulations of periodic and chaotic motion, that
illustrate the dependence on initial conditions and the parameter variation, will be presented and
the occurrence of global strange attractors will be analysed. We show how to associate the system
to symbolic dynamical systems - topological Markov chains - characterized by transition matrices.
These transition matrices gives important characterization of the system in the chaotic behaviour,
namely the computation of the topological entropy.

2 The Forced Damped Piecewise Oscillator Model

If we consider that x represents the displacement, x′ is the velocity and x′′ is the acceleration,
the motion of a forced damped oscillator can be described by the second-order non-autonomous
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differential equation (1.1), where g is a linear piecewise function defined by

g(x) =


2

π
x− 2j if x ∈ Ij =

[
−π

2
+ jπ,

π

2
+ jπ

]
and j even,

− 2

π
x+ 2j if x ∈ Ij =

[
−π

2
+ jπ,

π

2
+ jπ

]
and j odd.

The local solutions of equation (1.1) are known explicitly on each interval Ij , j ∈ Z, since the two
families of differential equations involved are linear:

x′′ + αx′ +
2

π
x− 2j = F cos(ωt), (2.1)

for x ∈ Ij =
[
−π

2
+ jπ,

π

2
+ jπ

]
and j even, and

x′′ + αx′ − 2

π
x+ 2j = F cos(ωt), (2.2)

for x ∈ Ij =
[
−π

2
+ jπ,

π

2
+ jπ

]
and j odd.

First, we deduce the expression of the solution of the family of differential equations (2.1). In order
to obtain the general solution of the homogeneous equation

x′′ + αx′ +
2

π
x = 0,

we consider the characteristic equation of the differential equation, P (λ) = 0, given by

P (λ) = λ2 + αλ+
2

π
= 0.

Since,

λ2 + αλ+
2

π
= 0 ⇐⇒ λ = −α

2
±
√(α

2

)2
− 2

π
,

if
(α
2

)2
− 2

π
< 0, that is, |α| <

√
8

π
, we obtain a pair of complex conjugate roots. Thus, the general

solution of the homogeneous equation, xh(t), is of the form

xh(t) = e−
α
2
t
[
c1 cos

(√
β1t
)
+ c2 sin

(√
β1t
)]

, (2.3)

where β1 =
2

π
−
(α
2

)2
and the coefficients c1 and c2 depend on the initial conditions.

Now, we must determine the particular solution, xp(t), of the family of differential equations (2.1).
In this case, note that the family of differential equations (2.1) can be written in the form

P (D)x = q1(t) + q2(t) = F cos(ωt) + 2j,

where D is the differential operator, P (D)x1 = q1(t) and P (D)x2 = q2(t). So

q1(t) = a1 cos(bt) + a2 sin(bt) = F cos(ωt)

and, therefore, we have a1 = F, a2 = 0 and b = ω. As z = ±iω is not a root of the characteristic
equation P (λ) = 0 , then k = 0 is the multiplicity of ±iω in P (λ). Thus, the particular solution
x1(t) is of the form

x1(t) = A cos(ωt) +B sin(ωt),
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where A and B are constants.

On the other hand, since q2(t) = 2j and k = 0, because z = 0 is not a root of P (λ) , we have that
the particular solution x2(t) is A0. Therefore, the particular solution of this family of differential
equations can be defined as

xp(t) = x1(t) + x2(t) = A cos(ωt) +B sin(ωt) +A0.

Now, deriving xp(t) and replacing the expressions in equation (2.1), we obtain

−Aω2 cos(ωt)−Bω2 sin(ωt) + α[−Aω sin(ωt) +Bω cos(ωt)] +
2

π
[A cos(ωt) +B sin(ωt) +A0]

= F cos(ωt) + 2j ⇐⇒ A =
F
(
2
π
− ω2

)
α2ω2 +

(
2
π
− ω2

)2 , B =
F α ω

α2ω2 +
(
2
π
− ω2

)2 and A0 = jπ.

So, the particular solution is

xp(t) =
F
(
2
π
− ω2

)
α2ω2 +

(
2
π
− ω2

)2 cos(ωt) +
F α ω

α2ω2 +
(
2
π
− ω2

)2 sin(ωt) + jπ. (2.4)

Consequently, by (2.3) and (2.4), we have that the general solution of the family of equations (2.1)
is

x(t) = e−
α
2
t
[
c1 cos

(√
β1t
)
+ c2 sin

(√
β1t
)]

+
F
(
2
π
− ω2

)
α2ω2 +

(
2
π
− ω2

)2 cos(ωt) +
F α ω

α2ω2 +
(
2
π
− ω2

)2 sin(ωt) + jπ.

Considering the initial conditions x(t0) = x0 ∈ Ij =
[
−π

2
+ jπ,

π

2
+ jπ

]
, with j even, and x′(t0) =

v0, the local solution of the family of differential equations (2.1) in each interval Ij , with j even, is

x(t) = e−
α
2
(t−t0)

[
A1 cos

(√
β1 (t− t0)

)
+A2 sin

(√
β1 (t− t0)

)]
+

F
(
2
π
− ω2

)
α2ω2 +

(
2
π
− ω2

)2 cos (ω (t− t0)) +
F α ω

α2ω2 +
(
2
π
− ω2

)2 sin (ω (t− t0)) + jπ, (2.5)

where the coefficients A1 and A2, that depend on the initial conditions, are

A1 = x0 − jπ −
F
(
2
π
− ω2

)(
2
π
− ω2

)2
+ α2ω2

,

A2 = − 1√
β1

[
F α ω2

α2ω2 +
(
2
π
− ω2

)2 − v0 +
α

2

(
jπ − x0 +

F
(
2
π
− ω2

)
α2ω2 +

(
2
π
− ω2

)2
)]

.

The expression of the solution of the family of differential equations (2.2) can be obtained in an
analogous way. Since, the homogeneous equation is

x′′ + αx′ − 2

π
x = 0,

then the characteristic equation of the differential equation is

P (λ) = λ2 + αλ− 2

π
= 0
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and, in this case, we have two distinct real roots

λ = −α

2
−
√(α

2

)2
+

2

π
and λ = −α

2
+

√(α
2

)2
+

2

π
,

so the general solution of the homogeneous equation, xh(t), is of the form

xh(t) = e−
α
2
t
[
d1e

−
√

β2t + d2e
√

β2t
]
, (2.6)

where β2 =
2

π
+
(α
2

)2
and the coefficients d1 and d2 depend on the initial conditions.

As in the previous case, the particular solution of the family of differential equation (2.2) is defined
by

xp(t) = x1(t) + x2(t) = A cos(ωt) +B sin(ωt) +A0.

Then, deriving xp(t) and replacing the expressions in the equation (2.2), we have that

A = −
F
(
2
π
+ ω2

)
α2ω2 +

(
2
π
− ω2

)2 , B =
F α ω

α2ω2 +
(
2
π
+ ω2

)2 and A0 = jπ.

So, the particular solution is

xp(t) = −
F
(
2
π
+ ω2

)
α2ω2 +

(
2
π
− ω2

)2 cos(ωt) +
F α ω

α2ω2 +
(
2
π
+ ω2

)2 sin(ωt) + jπ. (2.7)

Thus, by (2.6) and (2.7), the general solution of the family of equations (2.1) is

x(t) = e−
α
2
t
[
d1e

−
√

β2t + d2e
√

β2t
]
−

F
(
2
π
+ ω2

)
α2ω2 +

(
2
π
− ω2

)2 cos(ωt) +
F α ω

α2ω2 +
(
2
π
+ ω2

)2 sin(ωt) + jπ.

Consequently, the local solution of the family of differential equations (2.2) in each interval Ij =[
−π

2
+ jπ,

π

2
+ jπ

]
, with j odd, based on the initial conditions x(t0) = x0 ∈ Ij , with j odd, and

x′(t0) = v0, is given by

x(t) = e−
α
2
(t−t0)

[
B1 e−

√
β2(t−t0) +B2 e

√
β2(t−t0)

]
−

F
(
2
π
+ ω2

)
α2ω2 +

(
2
π
+ ω2

)2 cos (ω (t− t0)) +
F α ω

α2ω2 +
(
2
π
+ ω2

)2 sin (ω (t− t0)) + jπ, (2.8)

where the coefficients B1 and B2 are

B1 =
1

2
√
β2

[
F α ω2

α2ω2 +
(
2
π
+ ω2

)2 − v0 −
(√

β2 −
α

2

)(
jπ − x0 −

F
(
2
π
+ ω2

)
α2ω2 +

(
2
π
+ ω2

)2
)]

,

B2 =

(
jπ − x0 +

F
(
2
π
+ ω2

)
α2ω2 +

(
2
π
+ ω2

)2
)(

1

2
+

α

4
√
β2

)
+

1

2
√
β2

(
F α ω2

α2ω2 +
(
2
π
+ ω2

)2 − v0

)
.

Therefore, the families of solutions (2.5) and (2.8) can be repeatedly matched at

x = −π

2
+ jπ and x =

π

2
+ jπ, j ∈ Z,

the boundary points of the intervals Ij , to obtain the global solution of the equation (1.1) as a
continuous function. In fact, it is differentiable since we match the first derivatives.
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3 Symbolic Dynamics and Transition Matrix

The main idea behind Milnor and Thurston’s kneading theory [4] is to provide a classification of
modal maps in the interval using the symbolic itineraries of its critical points. Next, we present a
brief description of the symbolic dynamics for the particular case of bimodal maps (see, for example,
[5] and [6]).

We say that a continuous and piecewise monotonic map in the interval is bimodal if it has two
critical points in the interior of I and f(∂I) ⊂ ∂I.

Given a bimodal map f in a interval I = [a, b] , with c1 and c2 as critical points, assign the symbols
L (left), M (middle) and R (right) to each sub-interval of monotonicity and the symbols A and B
for each critical point (see [7]). By doing this, we get a correspondence between orbits of points
x ∈ I and symbolic sequences of Σ = {L,A,M,B,R}N , the itinerary of x by the map f,

itf (x) = ad (x) ad (f (x)) ad
(
f2 (x)

)
. . . ,

with ad
(
fk (x)

)
, the so-called address of the point fk (x) , given by

ad
(
fk (x)

)
=


L if fk (x) < c1,

A if fk (x) = c1,

M if c1 < fk (x) < c2,

B if fk (x) = c2,

R if fk (x) > c2.

The kneading data of the map f is the pair of itineraries of the image of each critical point,

K (f) = (K1 (c1) ,K2 (c2)) = (itf (f (c1)) , itf (f (c2))) ,

or only one when both critical points exist in the same orbit. The significance of this symbolic
topological invariant was made clear when Guckenheimer [8] presented a classification theorem of
modal maps in the interval based on its kneading data, showing how close it is from its topological
classification.

On the set Σ we define an order relation through the M−parity of a sequence S, that is, the parity
of the frequency in S of the symbol M. So, for two such sequences, P and Q in Σ, let i such that
Pi ̸= Qi and Pj = Qj for j < i. If the M−parity of the block P1 . . . Pi−1 = Q1 . . . Qi−1 is even
we say that P < Q if Pi = L and Qi ∈ {A,M,B,R} or Pi = A and Qi ∈ {M,B,R} or Pi = M
and Qi ∈ {B,R} or Pi = B and Qi = R. If the M−parity of the same block is odd, we say that
P < Q if Pi = A and Qi = L or Pi = M and Qi ∈ {L,A} or Pi = B and Qi ∈ {L,A,M} or Pi = R
and Qi ∈ {L,A,M,B} . If no such index i exists, then P = Q. When the orbit of a critical point,
Of (c1) or Of (c2) , is a k−periodic orbit we get a sequence of symbols that can be characterized by
a block of length k, S(k−1)A = S1 . . . Sk−1A or S(k−1)B = S1 . . . Sk−1B.

In what follows, we restrict our study to the case where the two critical points are periodic, c1
has a p−periodic orbit and c2 has a q−periodic orbit. Note that Of (c1) is realizable if the block
P = P (p−1)A = P1 . . . Pp−1A is maximal, that is, σi (P ) ≺ σ (P ) , where i = 1, . . . , p and σ
is the usual shift operator defined by σ(P1P2P3 . . . ) = P2P3 . . . . On the other hand, Of (c2) is
realizable if the block Q = Q(q−1)B = Q1 . . . Qq−1B is minimal, that is, σj (Q) ≻ σ (Q) , where
j = 1, . . . , q. Finally, note that the pair of sequences is realizable if it satisfies the following conditions
σi (P ) ≻ σ (Q) , i = 1, . . . , p and σj (Q) ≺ σ (P ) , j = 1, . . . , q.

Now, we present the transition matrix form−modal maps, that allows us to determine the topological
entropy of the map f . Let f be m−modal map in the interval I = [a, b] with kneading invariant
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K = (K1, . . . ,Km), such that the orbits of the critical points are all periodic with periods p1, . . . , pm,
respectively, that is,

(Ki)pi = Ci for i = 1, . . . ,m and pi > 0,

where Ci is the symbol that corresponds to the critical point ci, for i = 1, . . . ,m.
Let {Xi}p1+...+pm

i=1 be the set of itineraries given by the union of the sets{
σi(K1)

}p1

i=1
, . . . ,

{
σi(Km)

}pm

i=1
,

where σ is shift-operator, and let {xi}p1+...+pm
i=1 be the set of the points of the interval such that

itf (xi) = Xi.

Denoting by ρ a permutation in the set {1, 2, . . . , p1 + . . .+ pm} such that

xρ(1) < xρ(2) < · · · < xρ(p1+...+pm)

and doing zi = xρ(i) and Ji = [zi, zi+1] , for i = 1, 2, . . . , p1 + . . .+ pm, we obtain a partition of the
interval I determined by the orbits of the m critical points of the map. In this conditions, we can
define the following matrix.

The transition matrix associated to the kneading invariant K = (K1, . . . ,Km), denoted by AK, is
the square matrix, with dimension p1 + · · ·+ pm − 1, whose elements aij are given by

aij =

{
1 if Jj ⊂ f (Ji) ,
0 otherwise.

We can calculate the topological entropy of a piecewise monotonic map in the interval through the
corresponding transition matrix. This result, which the proof is in [9], [7] and [10], can be stated
as follows.

Proposition 3.1. Let f be a m−modal map with kneading invariant K = K (f). Let AK be the
transition matrix associated to K. Then, the topological entropy of f is given by

ht (f) = log (λmax (AK)) ,

where λmax (AK) is the spectral radius of AK.

4 Numerical Results

In this section, we will use the symbolic dynamics and transition matrices to analyse the nonlinear
dynamics of the forced damped piecewise oscillator. As mentioned previously, the great advantage
in getting matrices is that it allows us to calculate quantities like the topological entropy.

Let us begin by examining the behaviour of x as a function of time for several sets of parameters.
If we consider that the initial conditions are x(0) = 0 and x′(0) = 0 and the same values for the
damping coefficient α and the forcing frequency ω, the behaviour of the motion of the forced damped
piecewise oscillator changes radically when the forcing amplitude F increases. For example, for a
small damping coefficient α = 0.75 and a forcing frequency ω = 0.6, and considering that the value
of the forcing amplitude varies between F = 1.31 and F ≈ 1.38596, we obtain different types of
orbits, as it can be seen in Fig. 1, that exhibits different attractors, namely periodic and aperiodic
ones.
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Although, the pattern presented in Fig. 1 (e) is not a simple one as it is not completely random.
The behaviour in the chaotic regime is characterized by the phase-space trajectories exhibiting
many orbits that are nearly closed. This is a common property of chaotic systems – they generally
exhibit phase-space trajectories with significant structure.
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-2

-1
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2

(e)

Fig. 1. Graphs of the orbits for (a) F = 1.31, (b) F = 1.3355, (c) F = 1.345, (d)
F = 1.367 and (e) F ≈ 1.38598, with α = 0.75, ω = 0.6 and the initial conditions

x(0) = 0 and x′(0) = 0.

If we consider now a given set of parameters α, ω and F , the numerical results show that, for most
of the parameters values, the first return map is a bimodal map, therefore with two critical points,
c1 and c2. This lead us to two distinct situations: the orbit of c1 coincides with the orbit of c2, or
the orbit of c1 is different from the orbit of c2.

On the other hand, we search for values of the parameters for which the orbits of c1 and c2 are
finite. In fact, these are the ones relevant physically and computationally. In this case, we show
how to build the transition matrices.

In the first example, we show the evolution of the system described by our model, for different
initial conditions, only through the first return map. The return map indicates that, for this set of
parameter values, the behaviour of the coordinate x can be modeled by a one-dimensional iterated
map.

Example 4.1. Consider that the values of the damping and forcing frequency parameters are α =
0.75, ω = 0.6 and the forcing amplitude is F ≈ 1.38598. Fig. 2 shows the first return maps plotted
for the velocity of the forced damped piecewise oscillator, which yields chaotic behaviour.
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0
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(f)

0 1 2 3 4
0

1

2

3

4

(g)

0 1 2 3 4
0

1

2

3

4

(h)

Fig. 2. Graphs of the first return map, for α = 0.75, ω = 0.6 and F ≈ 1.38598,
considering the initial conditions (f) x(0) = 0.25, x′(0) = 0, (g) x(0) = 0.3, x′(0) = 0 and

(h) x(0) = 0, x′(0) = 0.

In the next example, we use symbolic dynamics to obtain the transition matrices.

Example 4.2. Consider the set of parameters α = ω = 0.5 and F ≈ 0.783879. Then, the orbits
and the first return maps presented in Fig. 3 describe the evolution of the system. It exhibits the
existence of two different attractors.

Each of the critical points with period five obtained has, respectively, the kneading sequences
K =LMMLA, in the first case where the initial conditions are x(0) = 0.22 and x′(0) = 0, and
K = RMMRB, in the second where corresponding initial conditions are x(0) = 0 and x′(0) = 0, to
which we can associate, respectively, the following transition matrices:

ALMMLA =


0 0 1 0
0 1 1 0
0 1 1 1
1 1 1 1

 and ARMMRB =


1 1 1 1
0 1 1 1
0 1 1 0
0 0 1 0

 .

Given that the spectral radius of both matrices is λmax (ALMMLA) = λmax (ARMMRB) ≈ 2.71761,
then the topological entropy is approximately 0.99975, in both cases.

In the last example, we present a case where we obtain an orbit with period eleven. In this case,
we have one attractor since the orbit of c1 coincides with the orbit of c2.
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Fig. 3. Graphs of the orbits, (i) and (j), and the first return maps, (k) and (l), for
the corresponding initial conditions and parameters values presented in Example 4.2.

Example 4.3. Considering the set of parameters α = 0.75, ω = 0.6 and F = 1.391, we obtain both
critical points with period eleven, whose orbit and the first return map are presented in Fig. 4. In
this case, since the two attractors coincide, we have the kneading sequence

K =RMMMLALMMRB.

So, the transition matrix AK associated to the kneading sequence K is given by

ARMMMLALMMRB =



0 0 1 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 1 0 0


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and since the spectral radius of the matrix is λmax (AK) ≈ 2.11157, we have that the topological
entropy is about 0.74743.

-4 -2 2 4
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-1

1

2

(m)

0 1 2 3 4
0

1

2

3

4

(n)

Fig. 4. Graphs of (m) the orbit and (n) the first return map of the periodic points,
with α = 0.75, ω = 0.6 and F = 1.391.

5 Conclusion

In the present work, we studied the motion of a forced damped piecewise oscillator which is modeled
by a second-order non-autonomous differential equation. Our piecewise linear dynamical systems
have a continuous regime, where the time flow is characterized by the explicit solutions of the
ordinary differential equations, and a singular regime, where the time flow is characterized by an
appropriate transformation. Using symbolic dynamics and transition matrices, we analysed the
behaviour of the motion of the forced damped piecewise oscillator. As it was shown in Figs 1-4,
the variation of the parameters α, ω and F and also of the initial conditions produces a significant
effect in the behaviour of the motion.
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