

British Journal of Mathematics & Computer Science

18(2): 1-11, 2016, Article no.BJMCS.28515

ISSN: 2231-0851

SCIENCEDOMAIN international
www.sciencedomain.org

*Corresponding author: E-mail: esther.isola@uniosun.edu.ng;

Development of an Improved Cognitive Complexity Metrics for

Object- Oriented Codes

O. Isola Esther

1,2*
, O. Olabiyisi Stephen

1,2
, O. Omidiora Elijah

1,2
, A. Ganiyu Rafiu

1,2
,

T. Ogunbiyi Dimple
1,2

 and Y. Adebayo Olajide
1,2

1
Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.

2
Osun State University, Osogbo, Osun State, Nigeria.

Authors’ contributions

This work was carried out in collaboration between all authors. Authors OIE and OOS designed the study,

performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Authors

OOE and AGR managed the analyses of the study. Authors YAO and TOD managed the literature searches.

All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/BJMCS/2016/28515

Editor(s):

(1) Jacek Dziok, Institute of Mathematics, University of Rzeszow, Poland.
Reviewers:

(1) Radosław Jedynak, Kazimierz Pulaski University of Technology and Humanities, Radom, Poland.

(2) Hasni Neji, University of Carthage, Tunisia.

Complete Peer review History: http://www.sciencedomain.org/review-history/15845

Received: 22
nd

 July 2016

Accepted: 8
th

 August 2016

Published: 20th August 2016

Abstract

Cognitive informatics helps in comprehending the software characteristics and its complexity measures

can be used to predict critical information about testability of software system. In this paper, a cognitive

complexity metric for C++ programming language is formulated. Since C++ is an object – oriented

language, the cognitive complexity metric is capable to evaluate any object- oriented language. This

paper presents a new cognitive complexity metric named Improved Cognitive Complexity Metric (ICCM)

and perform a comparative study of the proposed metric with the existing metric such as NCCOP, CFS,

CICM and CPCM. The result shows that the proposed metric performs better than other metrics by giving

more information contained in the software and reflecting the understandability of a source code. Also, an

attempt has also been made to present the relationship among ICCM, NCCOP, CICM, CFS and CPCM

using Pearson correlation coefficient method.

Keywords: Software complexity; cognitive informatics; basic control structure; object-oriented language.

Original Research Article

Esther et al.; BJMCS, 18(2): 1-11, 2016; Article no.BJMCS.28515

2

1 Introduction

Software complexity is a major feature of computer software and is difficult to be measured accurately. It is

defined as “the degree to which a system or component has a design or implementation that is difficult to

understand and verify” [1]. High complexity may result in more errors and difficulties in maintenance,

understandability, modification and testing effort [2,3]. Therefore, there has been a great deal of interest in

defining appropriate metrics to measure the complexity of the software. Although some useful metrics have

been proposed to measure the software complexity [4,5], the current solutions are not enough to settle down

this rigorous problem. Both computer researchers and the software engineers are looking for more powerful

and effective metric of software complexity. There are some complexity measures based on cognitive

aspects such as Cognitive Functional Size (CFS) proposed by Wang and Shao [6] to measure the complexity

of a software, it depends on input, output parameters and internal control flow. It excludes some important

details of cognitive complexity such as information contained in variables and operators.

New Cognitive Complexity of Program (NCCoP) was proposed by Amit and Kumar [7] to measure the

cognitive complexity of a program; the metric considered the number of variables in a particular line of code

and the weight of Basic Control Structure. NCCoP fails by not distinguishing between the variables in a

program, which only provide the information contained in a software. Nevertheless, to solve such a problem,

Arbitrarily Named Variables (ANV), Meaning Named Variables (MNV) and the weight of Basic Control

Structures (BCS) is employed to improve the performance of NCCoP. Hence, this research formulated a

cognitive complexity metric using ANV, MNV and BCS to provide more information contained in a

software and measure the difficulty of code comprehension.

2 Review of Some Cognitive Complexity Measures

Complexity measures is divided into code based complexity measures, cognitive complexity measures and

requirement based complexity measure.

2.1 Code based complexity measures

Code complexity metrics are used to locate complex code. To obtain a high quality software with low cost of

testing and maintenance, the code complexity should be measured as early as possible in coding. Developer

can adapt his code when recommended values are exceeded [2]. Code based complexity measure comprises

Halstead Complexity Measure and Mac Cabe’s Cyclomatic Complexity and Lines of Code Metrics.

2.2 Cognitive complexity measures

Cognitive complexity measures quantify human difficulty in understanding the source code [8]. Some of the

existing cognitive complexity measures are KLCID Complexity Metrics, Cognitive Functional Size (CFS),

Cognitive Information Complexity Measure (CICM), Modified Cognitive Complexity Measure (MCCM),

Scope Information Complexity Number of Variables (SICN), Extended Structure Cognitive Information

Measure (ESCIM) and Unified Complexity Measure (UCM).

2.3 Klcid complexity metrics

Klemola and Rilling proposed KLCID based complexity measure. Defined identifiers as programmer

defined variables and based on identifier density (ID).

ID =
CodeofLine

sidentifierofnumberTotal
 (2.1)

Esther et al.; BJMCS, 18(2): 1-11, 2016; Article no.BJMCS.28515

3

For calculating KLCID, number of unique lines of code was found, lines that have thesame type and kind of

operands with same arrangements of operators considered equal. KLCID is defined as:

KLCID =
identifiercontaininglinesuniqueofNumber

linesuniqueofsettheinIdentifierofNumber

 (2.2)

This method can become very time consuming when comparing a line of code with each line of the program.

It also assumes that internal control structures for the different software’s are thesame.

2.4 Cognitive functional size

Wang and Shao [9] proposed functional size to measure the cognitive complexity. The measure defines the

cognitive weights for the Basic Control Structures (BCS). Cognitive functional size of software is defined

as:

CFS = () cOi WNN ∗+ (2.3)

Where Ni= Number of Inputs, No= Number of Outputs and Wc= Total Cognitive weight of software.

Wc is defined as the sum of cognitive weights of its q linear block composed in individual BCS’s. Since

each block may consist of m layers of nesting and each layer with n linear BCS [10], total cognitive weight

is defined as:

Wc = ()∑ ∏∑
= = =








q

j

m

k

n

i

c lkjW
1 1 1

,, (2.4)

Only one sequential structure is considered for a given component.

Now difficulty with this measure is the inability to provide an insight into the amount of information

contained in software.

2.5 Cognitive information complexity measure

Cognitive Information Complexity Measure (CICM) is defined as product of weighted information count of

the software and sum of the cognitive weights of Basic Control Structure (SBCS) of the software [11]. The

CICM can be expressed as:

CICM = WICS * SBCS (2.5)

This establishes a clear relationship between difficulty in understanding and its cognitive complexity. It also

gives the measure of information contained in the software as:

Ei =
LOCS

ICS

where Ei represents Information Coding Efficiency.

The cognitive information complexity is higher for the programs, which have higher information coding

efficiency. Now the problem with these measures is that, they are code dependent measures, which itself is a

problem as stated earlier. Various theories have been put forward in establishing code complexity in

different dimensions and parameters.

Esther et al.; BJMCS, 18(2): 1-11, 2016; Article no.BJMCS.28515

4

2.6 Modified cognitive complexity measure

CFS was modified by [11] into Modified Cognitive Complexity Measure (MCCM) by simplifying the

complicated weighted information count in CICM as:

MCCM = (Ni1 + Ni2) * Wc

where Ni1 is the total number of occurrences of operators, Ni2 is the total number of occurrences of operands,

and Wc is the same as in CFS.

However, the multiplication of information content with the weight Wc derived from the whole BCS's

structure remains the approach's drawback. Also, [12] proposed Cognitive Program Complexity Measure

(CPCM) based on the arguments that the occurrences of inputs/output in the program affect the internal

architecture and are the forms of information contents. The computation of CFS was also critized such that

the multiplication of distinct number of inputs and outputs with the total cognitive weights was not justified

as there was no reason why using multiplication.

Besides, it was established that operators are run time attributes and cannot be regarded as information

contained in the software as proposed by [11]. Based on these arguments, CPCM was thus defined as:

CPCM = cio WS + (2.6)

where Sio is the total occurrences of input and output variables and Wc is as in CFS.

3 Proposed ICCM (Improved Cognitive Complexity Measure)

The names of variables used in the code plays a very important role in increasing or decreasing the

understandability of the code. For calculating the understandability and information contained in the

software in this research, Arbitrarily Named Variables and Meaningfully Named Variables are considered.

3.1 Number of arbitrarily named variables

Following [13], it was suggested that the name of the variables should be chosen in a way which is

meaningful in programming. If the variable names are taken arbitrarily, there is no problem if the developer

himself is evaluating the code. Fig. 1 shows the code written in ANV vs MNV, it was observed that effort

required for comprehending the syntax written with Arbitrarily Named Variable (ANV) increases the

difficulty of understanding three times more than the one written with Meaningfully Named Variable

(MNV) [14] as shown in Fig. 1. In the formulation of the proposed metric, the weights of the ANV are

considered to be three times greater than MNV. Therefore, the weight of ANV is assigned as three units.

3.2 Number of meaningfully named variables

It is clear that Meaningfully Named Variables are more understandable than Arbitrarily Named Variables, as

shown in Fig. 1. The weight of MNV is assigned one unit. It should be noted that discriminating the ANV

and MNV is subject to developer’s choice.

3.3 Cognitive weights of basic control structures (BCS)

The complexity of a program is directly proportional to the cognitive weights of Basic Control Structures

(BSC). The cognitive weight of software is the extent of difficulty or the relative time and effort for

comprehending the given software modelled by a number of BCS. BCS are basic building blocks of any

Esther et al.; BJMCS, 18(2): 1-11, 2016; Article no.BJMCS.28515

5

software and their weights are one, two and three as given in Table 1. These weights are assigned on the

classification of cognitive phenomenon as discussed by [4].

Fig. 1. Understandability of ANV over MNV

Table 1. Basic control structure [4]

Category BCS CWU

Sequence Sequence 1

Condition If-else/Switch 2

Loop For / For – in 3

 While/do..While

Functional activity Functional-call

 Alert/prompt throw 2

Using the above considerations, we propose the following metric to reflect the information contained in the

software and code comprehensibility.

)(*)3(
1 1

KWMNVANVICCM C

LOCs

K

LOCs

V

∑ ∑
= =

+= (2.7)

Where, the first summation is the line of code from 1 to the last Line Of Code (LOC), Arbitrarily Named

Variables (ANV) and Meaningfully Named Variable (MNV), are the number of variables in a particular line

of code and WC is the weight of BCS as shown in Table 1 corresponding to the particular structure of line.

3.4 Demonstration of ICCM

The proposed cognitive complexity metric given in equation (2.7) is demonstrated with First in First Out

Algorithm, given by the following Table 2.

Esther et al.; BJMCS, 18(2): 1-11, 2016; Article no.BJMCS.28515

6

Table 2. First - In - First – Out (FIFO) algorithm for C++ programming language

S/N Code ANV + CWU ICCM

 MNV

1. # include (iostream) 0 1 0

2. # include (stdio.h) 0 1 0

3. # include (stdlib.h) 0 1 0

4. # include (ctype.h) 0 1 0

5. using name space std, 2 1 2

6. int found (int x, int 1, int max) 12 1 12

7. { 0 1 0

8. for (int i = 0, I<max, 1++) 11 3 33

9. if (1 [i] = = x) (return (i) ;) 4 2 8

10. return (-7); 1 1 1

11. } 0 1 0

12. int main () 1 1 1

13. { 0 1 0

14. cout<<”\n\n enter maximum number of frames in

 the main memory: \t”; 4 1 4

15. int max; 2 1 2

16. cin > max; 1 1 1

17. int ∞ 1 = new int [max]; 4 1 4

18. for (int I = 0; I < max; i++) 1 [i] = - 1, 14 1 14

19. int a, x; 7 1 7

21. cout <<" \n \n enter the sequence of page request

 (enter -1 to stop) : \ t 1 1 1

22. while (1) 0 3 0

23. { 0 1 0

24. cin >> x; 3 1 3

25. if (x = = -1) { 3 2 6

26. cout << “ \n \n” ; break; } 1 1 1

27. else { 0 1 0

28. if (k < max) 4 2 8

29. { 0 1 0

30. if (nes = found (x, 1, max) ! = -1) 6 2 1

31. cout << “ \n \n page “ already exists frame “ << res << in MM 1 1 1

32. cout << “ \n \n Next page: \ t “ ; 3 1 3

33. } 0 1 0

34. else 0 1 0

35. { 0 1 0

36. if (cres = found (x, 1, max) e = -1) 9 2 18

37. { 0 1 0

38. cout <<" \n \n page " << " already exists in frame 1 1 1

39. " << res << " in MM; 4 1 4

40. cout << " \n \n Next page : \ t " ; 3 1 3

41. } 0 1 0

42. else 0 1 0

43. { 0 1 0

44. cout << " \n \n page fault has occured " ; 1 1 1

45. cout << " \n \n page " << x <<" has been allocated 3 1 3

46. from "<< c <<" in MM by replacing pace " << 1 [c] 7 1 7

47. 1 [c] = x; 6 1 6

48. c = (c + 1) % max; 7 1 7

49. cout << " \n \n Next page : \ t " ; 4 1 4

Esther et al.; BJMCS, 18(2): 1-11, 2016; Article no.BJMCS.28515

7

S/N Code ANV + CWU ICCM

 MNV

50. } 0 1 0

51. } 0 1 0

52. } 0 1 0

53. } 0 1 0

54. delete [] 1; 0 1 0

55. return (0); 1 1 1

56. } 0 1 0

 187
Line 1 to 4: There is no variable. 0

Line5: There are 2 MNV. 2

Line6: There are 2 ANV and 6 MNV. 3(2) + 6 = 12

Line7: There is no variable. 0

Line8: There are 3 ANV and 2 MNV. 3(3) + 2=11

Line9: There are 3 ANV and 1 MNV. 3(1) + =4

Line10: There is 1 MNV.1

Line11: There is no variable. 0

Line12: There is 1 MNV.1

Line13: There is no variable. 0

Line14: There are 1 ANV and 1 MNV. 3(1) + 1= 4

Line15: There are 2 MNV. 2

Line16: There is 1 MNV.1

Line17: There are 4 MNV. 4

Line18: There are 4 ANV and 2 MNV. 3(4) + 2 = 14

Line19: There are 2 ANV and 1 MNV. 3(2) + 1= 7

Line20: There are 2 ANV and 2 MNV. 3(2) + 2 = 8

Line21: There is 1 MNV. 1

Line22&23: There is no variable. 0

Line24: There is 1 ANV. 3(1) = 3

Line25: There is 1 ANV. 3(10) = 3

Line26: There is 1 MNV. 1

Line27: There is no variable 0

Line28: There are 1 ANV and 1 MNV. 3(1) + 1 = 4

Line29: There is no variable. 0

Line30: There is 1 ANV and 3 MNV. 3(1) + 3 = 6

Line31: There is 1 MNV. 1

Line32: There is 1 ANV and no MNV. 3(1) = 3

Line33&35: There is no variable. 0

Line36: There are 2 ANV and 3 MNV. 3(2) + 3 = 9

Line37: There is no variable. 0

Line38: There is 1 MNV. 1

Line39: There are 1 ANV and 1 MNV. 3(1) + 1= 4

Line40: There is 1 ANV. 3(1) = 3

Line41&43: There is no variable. 0

Line44: There is 1 MNV. 1

Line45: There is 1 ANV. 3(1) = 3

Line46: There are 2 ANV and 1 MNV. 3(2) + 1 = 7

Line47: There are 2 ANV. 3(2) = 6

Line48: There are 2 ANV and 1 MNV. 3(2) +1 =7

Line49: There is 1 ANV. 3(1) + 1 = 4

Line50&53: There is no variable. 0

Line54: There is no variable. 0

Line55: There is 1 MNV. 1

Line56: There is no variable. 0

Esther et al.; BJMCS, 18(2): 1-11, 2016; Article no.BJMCS.28515

8

4 Comparative Studies between Proposed and Existing Cognitive

Measures

The cognitive complexity values for different existing cognitive measures and proposed measure for online

algorithms (Frequency Count (FC) algorithm, Optimal (OPTIMAL) algorithm, First in First Out (FIFO)

algorithm, Least Recently Used (LRU) algorithm, Transpose algorithm, Least Frequently Used (LFU)

algorithm) are shown in Table 3 and also the table for Pearson correlation coefficient among the measures

are shown in Table 4. The graph for comparison between the existing cognitive measures and the proposed

measure are shown in Figs. 2 and 3.

Fig. 2. Relative graph between ICCM, NCCOP, CFS, CPCM and CICM for C++ programs

Fig. 3. Scatter plots of complexity values for different measure in C++

0

200

400

600

800

1000

1200

1400

FC OPTIMAL FIFO LRU TRANSPOSE LFU MTF

C
o

g
n

it
iv

e
 C

o
m

p
le

x
it

y
 M

e
tr

ic

Online Algorithm

ICCM

NCCOP

CPCM

CICM

CFS

Esther et al.; BJMCS, 18(2): 1-11, 2016; Article no.BJMCS.28515

9

Table 3. Complexity values for different measures in C++

ALGORITHM CFS CICM CPCM NCCOP ICCM

FC 97 106 55 100 196

OPTIMAL 79 123 125 220 355

FIFO 52 130 67 112 187

LRU 108 120 121 286 600

TRANSPOSE 82 236 63 138 402

LFU 98 267 92 180 426

MTF 61 96 97 220 385

Table 4. Pearson correlation of complexity values for different measures in C++

 CFS CICM CPCM NCCOP ICCM

CFS Pearson correlation 1 .268 .220 .319 .546

Sig. (2-tailed) .562 .636 .485 .205

N 7 7 7 7 7

CICM Pearson correlation .268 1 -.201 -.187 .232

Sig. (2-tailed) .562 .666 .689 .617

N 7 7 7 7 7

CPCM Pearson correlation .220 -.201 1 .924
**

 .679

Sig. (2-tailed) .636 .666 .003 .094

N 7 7 7 7 7

NCCOP Pearson correlation .319 -.187 .924
**

 1 .860
*

Sig. (2-tailed) .485 .689 .003 .013

N 7 7 7 7 7

ICCM Pearson correlation .546 .232 .679 .860
*
 1

Sig. (2-tailed) .205 .617 .094 .013

N 7 7 7 7 7
**. Correlation is significant at the 0.01 level (2-tailed), *. Correlation is significant at the 0.05 level (2-tailed)

5 Discussion

In this research, series of experiments were conducted to show the effectiveness of the proposed metric. The

results as shown in Table 3, shows that ICCM gives accurate result compared to the other existing cognitive

complexity measures. ICCM for FIFO algorithm has the lowest value of 187 which indicates that lower

complexity information were packed in the software and also predict how user can easily understand some

functions in the code, NCCOP, CFS and CPCM were not able to observe it. Least Recently Used (LRU)

algorithm has the highest value of complexity which is (ICCM = 600), which indicates that LRU has the

highest complexity information packed in the software. CFS and NCCOP was able to show that but ICCM

considers the effort for comprehending the code and the information contained in software.

A relative graph which shows the comparison between CFS, CICM, CPCM, NCCOP and ICCM in C++

program is plotted in Fig. 2. A close inspection of this graph shows that ICCM is closely related to CFS,

CICM, CPCM and NCCOP, in which ICCM reflect similar trends. In other words, high ICCM values are

due to the fact that ICCM includes most of the parameters of different measures and measures the effort

required in comprehending the software. For example, ICCM has the highest value for LRU (600) which is

due to having larger size of the code and high cognitive complexity.

The correlation coefficient is a statistical measure that measures the relationship between two variables. If

one variable is changing its value then the value of second variable can be predicted. it was shown in Fig. 3

that their exist linear relationship between the pairs of different measurement.

Esther et al.; BJMCS, 18(2): 1-11, 2016; Article no.BJMCS.28515

10

6 Conclusion

The result of ICCM exhibits the complexity of program very clearly and accurate than other existing

cognitive measures. The practical applicability of the metric was evaluated by different online algorithm

codes written in C++ programming language to prove its robustness and well structureness of the proposed

measure and also, that there exist a degree of correlation between the measures. The comparative inspection

of the implementation of ICCM versus CFS, CPCM, CICM and NCCoP has shown that:

(i) ICCM makes more sensitive measurement, so it provides information contained in a software and

also measure the difficulties in understanding the code.

(ii) ICCM could be adopted by programmers in determining the understandability of Object Oriented

languages.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Jayanthi B, KrishnaKumari K. Brief study on Software quality metrics and software complexity

metrics in Web application. International Journal of Engineering Sciences & Research Technology.

2014;3(12):441-444.

[2] Watson AH, McCabe TJ. Structured testing: a testing methodology using the cyclomatic complexity

metric. Computer Systems Laboratory, National Institute of Standards and Technology; 1996.

[3] Nystedt S, Sandros C. Software complexity and project performance. School of Economics and

Commercial Law at the University of Gothenburg; 1999.

[4] Kushwaha DS, Misra AK. A modified cognitive information complexity measure of software. ACM

SIGSOFT Software Engineering Notes. 2006;31(5):1-4.

[5] Misra S. A complexity measure based on cognitive weights. International Journal of Theoretical and

Applied Computer Sciences. 2006;1(1):1-10.

[6] Shao J, Wang Y. A new measure of software complexity based on cognitive weights. Can. J. Elect.

Comput. Eng. 2003;28(2):69-74.

[7] Amit Kumar Jakhar, Kumar Rajnish. A new cognitive approach to measure the complexity of

software’s. International Journal of Software Engineering and Its Applications. 2014;8(7):185-198.

[8] Misra S, Misra AK. Evaluation and comparison of cognitive complexity measure. ACM SIGSOFT

Software Engineering Notes. 2007;32:2.

[9] Wang Y, Shao J. Measurement of the cognitive functional complexity of software. The 2nd IEEE

International Conference on Cognitive Informatics (ICCI'03), IEEE CS Press, London, UK. 2003;

67-74.

[10] Wang Y. The Real-Time Process Algebra (RTPA). Annals of Software Engineering: An International

Journal, USA. 2003;14:235- 274.

Esther et al.; BJMCS, 18(2): 1-11, 2016; Article no.BJMCS.28515

11

[11] Kushwaha DS, Misra AK. Robustness analysis of cognitive information complexity measure using

Weyuker properties. ACM SIGSOFT SEN. 2006;31:1.

[12] Misra S. Cognitive program complexity measure. Proc. of 6
th

 IEEE Int’l Conf. on Cognitive

Informatics. 2007;120.

[13] Olabiyisi SO, Omidiora EO, Isola EO. Performance evaluation of procedural cognitive complexity

metric and other code based complexity metrics. International Journal of Scientific & Engineering

Research. 2012;3:9.

[14] Isola EO. Development of an improved cognitive based complexity metric. Ladoke Akintola

University of Technology, Ogbomoso, Oyo State, Nigeria; 2016.

© 2016 Esther et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your

browser address bar)

http://sciencedomain.org/review-history/15845

