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ABSTRACT

The hypothesis of the spin of an electron, leading to its angular momentum, is no longer an open
question, in science. Experimental evidence like the hydrogen fine structure and the Stern-Gerlach
experiment in the 1920s and, recently, Nuclear Magnetic Resonance (NMR) have for long paved
the way to definitely end this debate. Equipped with this mathematical machinery potent enough to
handle the theories which are of interest to us, the expectation value of the overall relative linear
velocity component of a fermion field was investigated in a previous paper, found quantized, and
exceeding the speed of light. In the present article, we aim to review and describe this result
in the framework of a fiber bundle theory. Using a method developed in the 1980s by Zimmer
for Dynamical-System theory, we explicate the feasibility of the superluminal free electron and
neutrino result in bundle language.
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1 INTRODUCTION

The very particle-concept of an electron and its mechanical picture as a rigid body rotating about
its axis constitute a foundation of the hypothesis of the spin of the electron, as proposed by Kronig,
Uhlenbeck, and Goudsmit [2] [3], though this picture had faced a rejection, at its conception, on
the collective advice of Pauli, Kramers, and Heisenberg, [4]. Of course, the speed of rotation v,
calculated from the spin angular momentum magnitude of ~/2 and the classical electron radius of
r = 2.81794× 10−15metres, that is:

v = rω =
5~
4mr

=
5× 1.05457× 10−34Js

4 (9.10938× 10−31kg) (2.81794× 10−15metres)
= 513.5× 108m/s

is in excess (more than 100 times) of the speed
of light, where m denotes the electron mass and
ω its angular frequency.

In fact, from the beginning of the concept of
spin to date, there continue to exist conflicting
opinions among scientists on the subject of
faster-than-light phenomenon, divided into
advocate (cf.[5]) and those who deny this
possibility [6] [7]. At present (from 2008 to date),
scientists are yet to finally decide, in respect of
the conflicting conclusions of CERN experiments,
on superluminal neutrino result.

Up until 1900, it was quite impossible in Maxwell
and Kelvin synthesis to attribute a measure of
mass to an electromagnetic radiation and, let
alone, to imagine an equivalence between mass
and energy, as it is today for current level of
understanding of science to accept free spin-1/2
particles superluminal motion possibility.

Here, we explain why causality violation, due to
superluminal motion, should not be considered
as a paradoxical occurrence and signify the dead
end of scientific unfolding. Since spacetime
is curved, each “local” system of rectangular
coordinate axes could be thought of as an

orthogonal intersection of two great circles
(longitude and latitude) [8], at the infinity
scale. The linear motion, in spacetime, of a
superluminal particle departing from the origin
along any of these great circles (longitudinal, for
example) will be circular from one hemisphere
to the other; so that when the particle (under
’excessive’ speed) is found in the other
hemisphere, its (temporal) component will appear
negative on the “local” picture of the coordinate
axes. This is one way we may comprehend
the change to negative temporal component of
variation in spin angular momentum, leading to
“apparent” backward in time motion in the light
cone (see Fig. 1), and as portrayed in [1].

Thus, in reality, there is no backward in time
scenario, and the resulting causality violation
may be regarded as just a mirage.

In our previous article [1], with title: Investigation
of Superluminal Motion of Free Spin-half
Particles in Spacetime, we utilized the
symmetrized Dirac Lagrange density to derive
two important results. These are the variations in
mixed space-time components of orbital angular
momentum L03, and intrinsic spin angular
momentum S03, given by:

δL03

[
ψ (x) , ψ† (x)

]
= S03

[
ψ (x) , ψ† (x)

]
=

1

2

∫
d3xψ† (x)σ03ψ (x) (1.1)

and

δS03

[
ψ (x) , ψ† (x)

]
= −S03

[
ψ (x) , ψ† (x)

]
= −1

2

∫
d3xψ† (x)σ03ψ (x) , (1.2)

respectively, where ψ (x, t) denotes the Dirac wave function. If we insert the solutions of the Dirac
equation [9] [10] [11], with the free wave propagating in the z−direction with positive energy
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Fig. 1. Representation of the light cone in a coordinate system of two rectangular great
circles (longitude and latitude) of curved spacetime at infinity scale

Ψp,λ,+1/2 = N


(

1
0

)
cσ̂zp

m0c2+Ep

(
1
0

)
 exp [i (pz − Ept) /~] , (1.3)

(1.1) and (1.2) lead to the following equations for variations in orbital and spin angular momenta [1]:

δL03 (x) =
1

2

∫
d3xN

(
1 0 cσ̂zp

m0c2+Ep
0

)
exp [−i (pz − Ept) /~]

×σ03N


(

1
0

)
cσ̂zp

m0c2+Ep

(
1
0

)
 exp [i (pz − Ept) /~]

=
1

2
σ03xµ =

1

2
σ03


t
z
y
x

 (1.4)

and

δS03 (x) = −1

2
σ03xµ =

1

2
σ03 (−xµ) =

1

2
σ03


−t
−z
−y
−x

 . (1.5)

Equation (1.5) violates causality, while (1.4) does not. The matrix of the generalized angular momentum
transformation of the field is obtained as

r (0) =


0 0 0 − 1

4

0 0 − 1
4

0
0 1

4
0 0

1
4

0 0 0



=


0 0 0 − cos (V/c)
0 0 − cos (V/c) 0
0 cos (V/c) 0 0

cos (V/c) 0 0 0

 , (1.6)
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this culminates into the superluminal motion of the free spin-1/2 field, of overall relative linear, and
quantized, velocity of expectation value (cf.[1]):

V ≃
(
21π

50
+ 2kπ

)
× c, (k = 0, 1, 2, ...) , (1.7)

where c denotes the speed of light, as it should be in accordance with quantum mechanics prescription
that discretized restraints should account for discontinuous energy levels and spectra.

Observe that this superluminal result is not without a familiar precedent. Photon velocity in Multi-level
Universes World is also quantized, and the limiting speed of a particle with zero mass (i.e., of mass
m = 0) could be superluminal of velocity

CS = 1c, 2c, 3c, 4c, ... or 1c, 3c, 5c, 7c, ...,

For more information on this, see [12] [13] [14] [15] [16] [17]. The matrix r (0) in (1.6) is a non-
Hermitian, antisymmetric, rotation operator. In our attempt to identify the family of which this matrix
originates, it is of interest to note that the infinite dimensional spin angular momentum operators of
spin 1 boson particles, of the Infinite Dimensional Lorentz Group are given by

k =



· · · · · · · · · · · · · ·
· 0 0 0 0 5i ·
· 0 0 0 0 4i ·
· 0 0 0 0 3i ·
· 0 0 0 0 2i ·
· 0 0 0 i ·
· 0 0 0 0 ·
· 0 0 0 0 ·
· i 0 0 0 ·
· 2i 0 0 0 0 ·
· 3i 0 0 0 0 ·
· 4i 0 0 0 0 ·
· 5i 0 0 0 0 ·
· · · · · · · · · · · · · ·



, (1.8)

or

k =



· · · · · · · · · · · · · ·
· 0 0 0 0 5 ·
· 0 0 0 0 4 ·
· 0 0 0 0 3 ·
· 0 0 0 0 2 ·
· 0 0 0 1 ·
· 0 0 0 0 ·
· 0 0 0 0 ·
· −1 0 0 0 ·
· −2 0 0 0 0 ·
· −3 0 0 0 0 ·
· −4 0 0 0 0 ·
· −5 0 0 0 0 ·
· · · · · · · · · · · · · ·



, (1.9)

which are constructed from the six 4 × 4 Lorentz
group operators, involving the Lorentz boost.
Then, under certain proceedings (which we
cannot display in this so restricted arena) from
here, one can extend Einstein Special Relativity

to the so-called Worm Hole Special Relativity in
Multi-level Universes World, [12] [13] [14] [15]
[16] [17]. And our matrix r (0) of generalized
angular momentum of the free spin-1/2 field
seems somewhat to be familiar with the part of
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k shown in (1.9); they are both non-Hermitian,
antisymmetric, and second-diagonal operators,
for example.

Moreover, the propagation is helical and invariant
under spatial rotations, [18] [19] [20]. This
invariance under spatial rotations of the spin-
1/2 fields relates to the Invariance Reduction
Theorem (IRT) which renders the existence and
uniqueness problems of invariant fields into
a problem of Topological Dynamics involving
techniques from Ergodic Theory and Homotopy
Theory, [21]. It is our goal to enlarge the
audience of faster-than-light free spin-1/2 field
by attempting its interpretation in another
mathematical language, that of fiber bundle.

Section 2 of this paper reviews a method
developed in the 1980s by Zimmer for Dynamical-
System theory [22]. By this, the notions of
particle-spin motion and field motion can be
generalized. We elect to employ a discrete-time
formalism, though a continuous-time treatment is
also feasible. Two major theorems are presented,
the Decomposition Theorem, which allows one
to compare different invariant fields and the
Invariant Reduction Theorem, which gives new
insights into the existence and uniqueness
problems of invariant fields (and in particular
invariant spin fields). It turns out that the
well established notions of invariant polarization
field and invariant spin field are generalized to
invariant (E, l)-fields. Here the notation (E, l)
will mean that E is a topological space and
that the function l : SO (3) × E → E is a
continuous SO (3)−action, i.e., l (I;x) = x and
l (r1r2;x) = l (r1; l (r2;x)) , where ri (i = 1, 2)
are rotation matrices. With the flexibility in the
choice of (E, l) we have a unified way to study
the dynamics of spin-1/2 particles. Accordingly
the special cases (E, l) =

(
R3, l1/2

)
is discussed

in some detail. Section 3 looks at interpreting the
result of superluminal free spin-1/2 field in the
fiber bundle formalism.

2 THE FORMALISM

Bundle aspects are the origin of our formalism
(see [23] ) and therefore supply a steady flow
of ideas, many of which are not even mentioned
here (e.g., algebraic hull, characteristic class,
rigidity). We begin this section with a formal
definition of fiber bundle, as distilled from [24]

[25] [26], together with an underlying short bundle
theory.

Definition A fiber bundle is a structure
(E,B, π, F ), where E, B, and F are topological
spaces and π : E → B is a continuous surjection
satisfying a local triviality condition outlined
below. The space B is called the base space
of the bundle, E the total space, and F the fiber.
The map π is called the projection map (or bundle
projection). We shall assume, in the local triviality
condition which follows, that the base space B is
connected. It is required that for every x in E,
there is an open neighborhood U ⊂ B of π (x)
(which will be called a trivializing neighborhood)
such that there is a homeomorphism φ: π−1 (U)
→ U × F (where U × F is the product space)
in such a way that π agrees with the projection
onto the first factor. That is, the following diagram
(Fig. 2) should commute: where proj1 : U × F
→ U is the natural projection and φ: π−1 (U) →
U × F is a homeomorphism. The set {(Ui, φi)}
of all (Ui, φi) is called a local trivialization of the
bundle.

Thus for any p in B, the preimage π−1 ({p}) is
homeomorphic to F (since proj1 ({p}) clearly is)
and is called the fiber over p. Every fiber bundle
π : E → B is an open map, since projections of
products are open maps. Therefore B carries the
quotient topology determined by the map π.

A fiber bundle (E,B, π, F ) is often denoted F
−→ E

π−→B which, in analogy with a short exact
sequence, indicates which space is the fiber, total
space and base space, as well as the map from
total to base space.

A smooth fiber bundle is a fiber bundle in the
category of smooth manifolds. That is, E, B, and
F are required to be smooth manifolds and all the
functions above are required to be smooth maps.

Fiber bundles are the natural language for the
description of a gauge theory. Locally a principal
bundle P is the product of a structure group
(i,e., gauge group) with the base space (space-
time), but globally twists can appear given by
the translation functions, [27]. For example, a
cylinder is the trivial product of a line with a circle.
A Möbius strip would be a nontrivial bundle with
one 180o twist as the line went aroud the circle.
Locally a Möbius strip and a circle are identical
but globally quite different.
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Fig. 2. Commutation diagram

Fig. 3. Invariant helical motion of free spin-half fields: Concentric circles centered at the
origin; invariant polarization describing the spin equilibrium of a bunch

2.1 Homotopy in the Rotation
and Lorentz Groups

The description of intrinsic spin, whether for
bosons or for fermions, is in terms of fiber
bundles with an SO (3) structure group. It is
clearly of some interest then to understand the
“loop structure”, i.e., the fundamental group, of
R3 × SO (3) . Notice that SO (3) does indeed
have a natural topology. The entries of a 3 × 3
matrix can be strung out into a column matrix
which can be viewed as a point in R9. Thus,
SO (3) can be viewed as a subset of R9 and
therefore inherits a topology as a subspace of R9,
[28]. A considerably more informative “picture” of
SO (3) can be obtained as follows: Every rotation
of R3 can be uniquely specified by an axis of
rotation, an angle and a sense of rotation about

the axis. We claim that all of this information
can be codified in a single object, namely, a
vector in R3 of magnitude at most π. Then the
axis of rotation is the line along n⃗, the angle of
rotation is |n⃗| and the sense is determined by the
“right hand rule”. Notice that a rotation along n⃗
through an angle θ with π ≤ θ ≤ 2π is equivalent
to a rotation along −n⃗ through 2π − θ so the
restriction on |n⃗| is necessary (although not quite
sufficient) to ensure that the correspondence
between rotations and vectors be one-to-one.
The set of vectors n⃗ in R3 with |n⃗|≤ π is just the
closed ball of radius π about the origin. However,
a rotation about n⃗ through π is the same as
a rotation about −n⃗ through π so antipodal
points on the boundary of this ball represent the
same rotation and therefore must be identified
in order that this correspondence with rotations
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be bijective. Carrying out this identification yields
real projective 3−space (topologically, the radius
of the ball is irrelevant, of course).

Having found the structure group of our fiber
bundle, we now look for the appropriate base
space. Consider the simple case of static
particles with spin. A very natural choice for
the base space is thus R3 minus the point at
the origin where the particle is assumed to be.
Thus we take our base space to be R3 − {0}.
Note that Minkowski space minus the world line
of a particle is contractible to R3 − {0} which,
in turn, can be retracted to S2 sphere without
changing the fiber bundle. Thus we are led to
a principal fiber bundle, P, with structure group
SO (3) and base space the two-sphere, S2, in
connection with describing static particles with
spin. The present work has nothing to do with
static spinning fermions, of course.

In our present case of moving spin-1/2 particles,
we consider the torus T d as the locus of the
position z of our particle with spin-1/2. It is known
that T d = Sd × Sd, where Sd is the d−sphere
and, generally d = 1, 2, 3. The “unreduced”
principal bundle underlying our formalism is a
product principal bundle (T d × SO(3),pd,T

d,Rd)
with bundle space T d × SO(3), base space
T d, bundle projection pd(z, r):=z (with z in T d

and r∈SO(3)), and structure group SO(3). So
Rd :SO(3) × T d × SO(3)→T d × SO(3) is an
SO(3)−action defined by Rd(r; z

′
, r

′
):= (z

′
,

r
′
rt), where the upper index tmeans “transpose”.

The reductions are just the principal subbundles
of the unreduced bundle. So they are uniquely
determined by their bundle space X which of
course is a subgroup of T d × SO(3).

2.2 Particle-spin Motion
For given (E, l) each particle carries, in addition
to its position z on the torus T d an E−valued
quantity x we call spin. The one-turn particle-
spin map is the function P [j, A] : T d×E →T d×E,
defined by

P [j, A] (z, x) = (j (z) , l (A (z) , x)) , (2.1)

where j ∈ Homeo
(
T d

)
is the one-turn particle

map (e.g., linear translation on the torus) and
A ∈ C

(
T d, SO (3)

)
is the one-turn spin transfer

matrix. Here Homeo
(
T d

)
denotes the set of

homeomorphisms on T d, C (X,Y ) denotes the
set of continuous functions from X to Y (for the
spinor formalism our formalism is obtained by
simply replacing SO (3) by SU (2). In the present
formalism, (2.1) is the most general description
of particle-spin dynamics and the choice of (E, l)
depends on the situation, e.g., (E, l) =

(
R3, l1/2

)
for spin-1/2 particles. We work in the framework
of topological dynamical systems and therefore
A, j, l are continuous functions. This condition
could be strengthened to A, j, l being smooth
functions.

2.3 Field Motion and Invariant
Fields

We are primarily interested in the field dynamics
induced by the particle-spin dynamics. Let f :
T d → E be an E−valued field on T d and
set x = f (z) in (2.1). Then after one turn
z becomes j (z) and the field value at j (z)
becomes l (A (z) ; f (z)). Observe that not after
one turn as in [21], but rather after two turns (to
generalize the case to spin-1/2 particles, as well
) the field f becomes the field f

′
: T d → E where

f
′
(z) := l

(
A
(
j−1 (z) ; f

(
j−1 (z)

)))
. Thus we

have the field map

f 7→ f
′
= l

(
A ◦ j−1; f ◦ j−1) , (2.2)

where ◦ denotes the composition of functions.
We call f ∈ C

(
T d, E

)
an “invariant (E, l)-field

of (j, A)” if it is mapped by (2.2) into itself, i.e., if

f ◦ j = l (A, f) . (2.3)

We call (2.3) the (E, l)-stationarity equation of
(j, A). Our main focus is on the existence of
solutions of (2.3) as this is what describes the
spin equilibrium of a bunch. In the important
case where (E, l) =

(
R3, l1/2

)
, an invariant

(E, l)−field f such that ∥f ∥= 1 is called an
invariant spin field (ISF). This completes our
introduction to the formalism.

2.4 The Set Σx[f ] and Its
Invariance

Let Ex :={l (r;x) : r ∈ SO (3)}; so, clearly,
Ex={S∈R3 :∥S∥=∥x∥} is a sphere centered at
(0,0,0). Then the Ex partition E and each set
T d×Ex is invariant under the particle-spin motion
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of (2.1) and so we have “decomposed” T d × E.
Let

Σx[f ] :=
{
z ∈ T d : f (z) ∈ Ex

}
. (2.4)

The nonempty sets among the Σx[f ] form a
partition of T d and tell us how the values of f
are distributed, i.e., z ∈ Σx[f ] iff f (z) ∈ Ex.
It follows from the definition of Σx[f ] and (2.2)
that Σx[f

′
]=j (Σx[f ]) . Thus if f is invariant

then every Σx[f ] is invariant under j and T d

is partitioned into f -dependent invariant sets for
the particle dynamics, an interesting fact in its
own right.

We can now state three facts related to the
existence of invariant fields. Firstly, if there exists
an x such that Σx[f ] is not invariant then f is not
an invariant field. Secondly, if Σx[f ] is nonempty,
let fx ∈ C (Σx[f ], Ex) where fx (z)= f (z) . Then
f is invariant iff fx (j (z)) =l(A (z) ; fx (z)) for
every nonempty Σx[f ].

Finally, suppose that j is topologically transitive
[e.g., off orbital resonance (see definition below)].
This means that a z0 ∈T d exists such that
B:={jn(z0): n=0,±1,±2,...} is dense in T d,
i,e., that the closure B̄ of B equals T d. Let
f be invariant and pick x such that z0∈Σx[f ]
then B⊂Σx[f ]. Assume E is Hausdorff (e.g.,
the topology is from a metric). Then it follows
that Σx[f ] is closed and , since B̄=T d, we
have Σx [f ] =T d. Thus topological transitivity
and the Hausdorff property imply an invariant f
takes values only in one Ex. The so-called ISF-
conjecture claims, for (E, l)=

(
R3, l1/2

)
, that if j

is topologically transitive, then ISF exists.

The above considerations (which are sufficient
for our purpose in this paper) can however
be formalized into the following two theorems
[21]: the Decomposition Theorem (DT) and the
Invariant Reduction Theorem (IRT); hence no
need arises to elaborate on these.

2.5 The Decomposition Theorem
(DT)

Let E be Hausdorff. It is natural to ask
about the relation between the dynamics on
two distinct invariant sets T d × Ex, T

d × Ey.
Consider the particle-spin trajectories defined by
(z(n + 1), x(n + 1))=P [j, A](z(n),x(n)) where

(z(0),x(0))=(z0,x0) is given with x0 ∈Ex. In
addition, suppose there exists β ∈C (Ex, Ey)
such that for every particle-spin trajectory
(z(n),x(n)) ∈T d×Ex, the function (z(n),β(x(n)))
∈T d ×Ey is particle-spin trajectory. A necessary
and sufficient condition for β to have this
property is that β(l(r; ξ))=l(r;β(ξ)) for all
r∈SO(3), ξ∈Ex and this is true iff r0∈SO(3)
exists such that {r0rrt0 :r∈Hx}⊂Hy. Here,
the subgroup Hη of SO(3) is defined by
Hη:={r∈SO(3) :l(r; η)=η} for every η∈E. The
proof of this is constructive showing that β can be
defined by β(l(r;x)):=l(rrt0; y). Furthermore, it
can be shown that if f is an invariant (E, l)−field
of (j, A) which takes values only in Ex, then
g∈C(T d, E), defined by g (z):=β(f(z)), is an
invariant field taking values only in Ey. In
summary, the DT classifies invariant fields in
terms of the functions β, i.e., in terms of the
subgroups Hx of SO(3).

2.6 The Invariant Reduction
Theorem (IRT)

Let f ∈ C(T d,E), x ∈ E, Σ̌x[f ] :={(z, r)∈(T d ×
SO(3)):l(r, x)=f(z)} and P̌ [j, A] ∈ Homeo(T d ×
SO(3)) with P̌ [j, A](z, r):=(j(z),A(z)r). Then
the IRT states that f satisfies (2.3) iff Σ̌x[f ]
is invariant under P̌ [j, A] for every x∈E. For
brevity sake, it should be noted that, as its
name suggests, the IRT identifies the dynamical
invariance of the reductions with the invariance of
the labeling fields f . It has a supplement called
the Cross Section Theorem (CST) which gives
valuable information to be used when applying
the IRT to (2.3), and the closely related Normal
Form Theorem (NFT) ties invariant fields with the
notion of normal form.

3 BUNDLE INTERPRETATION
OF THE SPECIAL CASE
OF SUPERLUMINAL FREE
SPIN-1/2 PARTICLES IN
SPACETIME

According to proceedings from above, for spin-
1/2 particles in 4-dimensional spacetime, the
characteristic condition and the most important
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(E, l) is given by

E = R1,3 and l1/2 (r;S) := rS. (3.1)

Here r is a 4 × 4 rotation matrix and S ∈
R1,3 is a 4-vector of the Lorentzian space R1,3

. Clearly E = R1,3 is Hausdorff (since R3 is)
and the Ex are concentric spheres centered at

(0, 0, 0, 0) (see Fig. 3) and the field map (2.2)
gives f

′
(z)=A

(
j−1 (z)

)
f
(
j−1 (z)

)
.

The invariant
(
R1,3, l1/2

)
−fields f are just the

invariant polarization fields describing the spin
equilibrium of a bunch and, calculating the norm
of the field (using (1.3)), we have

∥ f ∥2 = Ψ†
p,λ,+1/2 ·Ψp,λ,+1/2

= N
(

1 0 cσ̂zp
m0c2+Ep

0
)
exp [−i (pz − Ept) /~]

×N


(

1
0

)
cσ̂zp

m0c2+Ep

(
1
0

)
 exp [i (pz − Ept) /~]

= 1 =∥ f ∥; (3.2)

and this shows they are just the invariant spin fields.

Next, application of the formalism to our case of superluminal electron also requires, by the Invariant
Reduction Theorem, that the field in (1.3) satisfies the matrix equation:

l1/2 (r;S) := r (0)S = Ψp,λ,+1/2 (z)

= N


(

1
0

)
cσ̂zp

m0c2+λEp

(
1
0

)
 exp [i (pz − λEpt) /~]

 . (3.3)

This can happen only if, for a given Ψp,λ,+1/2 (z) there exists a 4-vector S =


t
x
y
z

 such that

r (0)S = Ψp,λ,+1/2 (z) ; in other words, the 4 × 4 matrix r (0) must be invertible. Observe that in our
present case r (0) is the generalized angular momentum transformation of the field [1] and is given
by

r (0) =


0 0 0 − 1

4

0 0 − 1
4

0
0 1

4
0 0

1
4

0 0 0

 .

Clearly, this matrix is elementary, and therefore invertible; the inverse is obtained as

r−1 (0) =


0 0 0 4
0 0 4 0
0 −4 0 0
−4 0 0 0

 .

Hence, the equation r (0)S = Ψp,λ,+1/2 (z) has an equilibrium solution.

Finally, it is worthwhile to notice that equations (1.4) and (1.5) of orbital and spin angular momenta
shed light on the identification of antipodal points (mentioned in the previous section) which are

highlighted as xµ =


t
x
y
z

 and −xµ =


−t
−x
−y
−z

 under the same constant transformation of matrix

9
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1
2
σ03 =


0 0 − 1

2
0

− 1
2

0 0 0
0 0 0 − 1

2

0 1
2

0 0

 , [1]. This leads to the matrix of the generalized angular momentum

of the system:

r (0) =


0 0 0 − 1

4

0 0 − 1
4

0
0 1

4
0 0

1
4

0 0 0

 =


0 0 0 − cos (V/c)
0 0 − cos (V/c) 0
0 cos (V/c) 0 0

cos (V/c) 0 0 0

 ,

followed by the resulting derivation of the expectation value of the overall relative linear superluminal
velocity component of the free spin-1/2 field:

V ≃
(
21π

50
+ 2kπ

)
× c, (k = 0, 1, 2, ...) ,

and this brings to an end a fiber bundle interpretation of our result.

4 CONCLUSION

The superluminal motion of free spin-half
particles may be feasible in the extension
of Einstein’s Special Relativity to the so-
called Worm Hole Special Relativity in Multi-
level Universes World. The transformations
underpinning these superluminal entities are
identified to be the infinitesimal rotation operators
of the Infinite Lorentz Group. Moreover, a fiber
bundle formalism can be used to investigate this
result. A principal fiber bundle with structure
group SO (3) and base space the two-sphere, S2,
describes static particles with spin since, one can
contract Minkowski spacetime minus the world
line of a particle to R3−{0} which, subsequently,
can be retracted to S2 sphere without changing
the fiber bundle. For moving spin-1/2 particles,
the underlying “unreduced” principal bundle is a
product principal bundle (T d × SO(3),pd,T

d,Rd),
with the earlier specifications. The fermion field
invariance, the Decomposition Theorem, and the
Invariance Reduction Theorem have all been
verified. Finally, antipodal points can readily be
identified together with the transformation which
originates them. This makes the interpretation
feasible.

ACKNOWLEDGEMENT

Thanks to Srinivasan BS., Banini KG., and
Nuviadenu C. for assistance in the preparation
of this manuscript.

COMPETING INTERESTS
Authors have declared that no competing
interests exist.

References
[1] Gazoya DKE, Oduro FT, Prempeh E.

Investigation of superluminal motion of free
spin-half particles in spacetime; 2015.
Available: http://dx.doi.org/10.5539/-
jmr.v7n4p12

[2] Gerlach W, Stern O. Z. Phys. 1922;9:349.

[3] Uhlenbeck GE, Goudsmidt S. Naturw.
1925;13:953.

[4] Pauli W. Wissenschaftlicher briefwechsel
mit bohr. Einstein, Heisenberg UA:Scientific
Correspondence. Springer-Verlag. 1930-
1939.

[5] Hill JM, Cox J. Einstein’s special relativity
beyond the speed of light. Proc. R. Soc. A;
2012. DOI: 10.1098/rspa.2012.0340

[6] Zhang QR. Relativity and impossibility
of superluminal motion. Chin. Phys. B.
2012;21:11.
Available: http://dx.doi.org/10.1088/1674-
1056/21/11/110301

[7] Physical Review Letters. 2011;107:181803.

[8] John GR. Foundations of hyperbolic
manifolds. Second Edition. Springer.
Graduate Texts in Mathematics. 2006;149.

10



Gazoya et al.; BJAST, 16(5), 1-11, 2016; Article no.BJAST.26498

[9] Schrdinger E. Sitzungber. Preuss. Akad.
Wiss. Phys.-Math. Kl. 1930;24:418.

[10] Dirac PAM. The quantum theory of the
electron, Part 1. Proc. Roy. Soc. (London).
1928;A117:610-624. Part two. Proc. Roy.
Soc. (London). 1928;A118:351-361.

[11] Greiner W. Relativistic quantum mechanics-
wave equations (3rd ed.). Berlin,
Heidelberg: Springer; 2000.

[12] ShaoXu R. Spin forms and spin interactions
among higgs bosons, between higgs boson
and graviton. Journal of Modern Physics.
2006;7:737-759.
Available: http://dx.doi.org/10.4236/jmp.-
2016.78070

[13] ShaoXu R. The origins of spins of
elementary particles; 2014.
ISBN 978-988-13649-7-5

[14] ShaoXu R. The origins of bosons and
fermions. Journal of Modern Physics.
Available: http:/dx.doi.org/10.4236/
jmp.2014.517181

[15] ShaoXu R. Interaction of the origins of spin
angular momentum 2nd edition; 2016.
ISBN 978-988-14902-0-9

[16] ShaoXu R. The third kind of particles.
ISBN 978-7-900500-91-5 (2011).
ISBN 978-988-15598-9-0. 2012.

[17] ShaoXu R. Faster than velocity of light
(Infinite Dimensional Lorentz Group of
TKP); 2013.
ISBN 978-988-12266-2-4

[18] Guildry M. Gauge field theories-an
introduction with applications. New York:
John Wiley & Sons, Inc.; 1991.

[19] Belinfante F. On the covariant derivative of
tensor-undors. Physica, 1940;7(4):305-324.

[20] Ohanian HC. What Is Spin?. New York.
February 5; 1984.

[21] Heinemann K, Ellison JA, Barber DP, Vogt
M. New and unifying formalism for study of
particle-spin dynamics using tools distilled
from theory of bundles. THPRO061 in
Proceedings of the 2014 International
Particle Accelerator Conference, Dresden,
Germany. 2014;15-20.

[22] Zimmer RJ. Ergodic theory and semisimple
groups. Springer Science & Business
Media. 2013;81.

[23] Feres R. Dynamical systems and
semisimple groups: An introduction.
Cambridge University Press, Cambridge;
1998. Handbook of dynamical systems Vol.
1A. Edited by B. Hasselblatt and A. Katok,
North-Holland, Amsterdam; 2002.

[24] Ehresmann C. Les connexions
infinitésimales dans un espace fibré
différentiable. Colloque de Topologie
(Espaces fibrés), Bruxelles. Georges
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