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+e manufacturing sectors are consistently striving to figure out ways to minimize the consumption of natural resources through
rational utilization. +is is achieved by a proper understanding of every minute influence of parameters on the entire process.
Understanding the influencing parameters in determining the machining process efficacy is inevitable. Technological ad-
vancement has drastically improved the machining process through various means by providing better quality products with
minimummachining cost and energy consumption. Specifically, the machining factors such as cutting speed, spindle speed, depth
of cut, rate of feed, and coolant flow rate are found to be the governing factors in determining the economy of the machining
process. +is study is focused on improving the machining economy by enhancing the surface integrity and tool life with
minimum resources. +e study is carried out on low-carbon mold steel (UNS T51620) using Box–Behnken design and grey
regression analysis. +e optimized multiobjective solution for surface roughness (Ra), material removal rate (MRR), and power
consumed (Pc) and tool life is determined and validated through the confirmatory run. +e optimized set of parameters in
Box–Behnken design and grey regression analysis with that of confirmatory runs shows a 10% deviation that proves the reliability
of the optimization techniques employed.
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1. Introduction

In the past decades, CNC machining has gained an irre-
placeable stand in offering higher reliability, accuracy, and
productivity. Moreover, CNC milling provides higher
flexibility in choosing the machining parameters levels when
compared to a conventional milling process. In industries,
different types of milling processes are employed such as
plain milling, end milling, side milling, and gang milling.
Out of these, in automobile, aerospace, and metal processing
industries, the CNC end milling process is inevitable due to
its high precision accuracy and reliability. Being a versatile
process, end milling has already conquered unrivalled place
in the manufacturing sector fulfilling the requirements. In
any machining process, numerous parameters are involved
that govern the process. +ese parameters are classified as
controllable and noncontrollable parameters. Controllable
parameters are those which can be tuned according to the
needs such as spindle rotation, cutting wheel speed, rake
angle, feed rate, and depth of cut. Noncontrollable pa-
rameters are those which cannot be directly controlled
rather can be governed indirectly through controllable pa-
rameters. Tool wear, surface roughness, and chip formation
vibrations are few to name.

An experimental study was carried on Al2014-T6 by
Ming-Yung and Chang [1] on surface integrity. Trial runs
were conducted by slot end milling. +e study revealed that
vibrations during machining and the rate of feed are the key
factors governing the surface roughness. Palanisamy et al. [2]
explored the machining consequences for CNC end milling
and arrived at an optimized set of machining parameters. +e
study included application of a genetic algorithm, and the
result revealed a higher influential contribution by feed and
depth of cut on surface roughness. A detailed study on the
implementation of adaptive control in CNC machining was
carried out by Suresh Kumar et al. [3]. In this study, the
research progress in maintaining the accuracy and reliability
of machining parameters was discussed elaborately. +e ar-
ticle summed up the techniques developed so far in improving
the efficacy of CNC machining. A theoretical approach was
proposed for forecasting surface integrity by Martellotti [4]
and Quintana et al. [5]. +e study was restricted to a single-
objective function where the possible effects of other re-
sponses were not considered. An analytical model was de-
veloped byMansour andAbdalla [6]. A comparison studywas
presented by Suresh Kumar et al. [7], which focused on
deviation recorded between genetic algorithm (GA) and ar-
tificial neural networks (ANN) in achieving optimum ma-
chining factors for CNC milling.

Alauddin et al. [8] investigated controllable factors af-
fecting the roughness and life of the tool used for machining.
Cutting speed, rate of feed, and depth of axial cut are taken as
the governing parameters. Chang et al. [9] and Coker and
Shin [10] conceded the optimization exploration using DOE
on face roughness. In another research, DOE was used by
Gologlu and Sakarya [11] and Dhokia et al. [12] to predict
the optimum level of surface roughness. Suresh Kumar et al.
[13] optimized CNC end milling of BSL168 using
Box–Behnken design. +e material considered was an

aluminium composite used for aeronautical applications.
+e work included optimization of contradictory responses,
namely surface integrity and MRR by controlling the ma-
chining constraints namely spindle speed, rate of feed, and
depth of cut.

+e literature survey also provides an insight into the
application of advanced optimization techniques such as
GA, ANN, and fuzzy [14–19] to arrive at an optimized set of
parameters for machining. Kumar et al. [20] investigated the
influencing parameters in the machining of AMS 4205. +e
experiment involved a multiobjective approach towards
providing a solution for achieving optimum results for
roughness and MRR. +e study included Taguchi robust
design and Box–Behnken design for arriving at the opti-
mized level of parameters. A detailed literature survey was
carried out by Zain et al. [21] on genetic algorithm and their
application towards the optimization of cutting parameters
in CNC milling. Suresh Kumar et al. [22] optimized the
surface integrity using CNC milling. +e material consid-
ered was A91060 and HSS tools used.+e study included the
application of response surface methodology to derive the
governing mathematical model for finding the optimum
solution through genetic algorithms.

A detailed report on the machining effect between the
work material and tool used was carried out by Brezocnik
and Kovacic [23]. Ganesh Kumar et al. [24] carried out a
detailed review on cutting tool measurement in the turning
process using cloud computing systems. +e study involved
the application of a genetic algorithm limited to a single
objective function. Oktem et al. [25] applied a genetic al-
gorithm in arriving at the optimized parameter to achieve
minimum surface roughness. A multiobjective approach for
optimization of cyclone separator was carried out by
Venkatesh et al. [26] using Taguchi robust design and
validated using numerical simulation. Ganesh Kumar et al.
[27] suggested optimum tool stress in CNC turning of EN8
steel using a numerical approach.

From the above-detailed study, one can witness exten-
sive research in the field of machining processes using
higher-order optimization tools. At the same time, it is
noteworthy to state that most of the work executed is limited
to single-objective functions. In reality, any machining
process is always associated with more than one response of
contradictory nature. +erefore, it becomes obligatory to
cram the consequences of accompanying responses to fix the
preeminent machining parameters.

+is study addresses a multiobjective function where an
attempt is made to arrive at optimizing contradictory re-
sponses namely roughness (Ra), MRR, and power con-
sumption (Pc). +e work material is a low-carbon mold steel
(UNS T51620), which is hard to machine.

2. Experimental Outline

+e sequential approach of the study is given as follows:

(1) Assigning of levels for each parameter
(2) Execution of experimental run based on

Box–Behnken design
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(3) Measurement of the roughness, MRR, and tool life in
terms of Pc

(4) Development of mathematical model for the pre-
diction of Ra, MRR, and Pc. It is also subjected to
adequacy check using ANOVA

(5) Application of grey regression analysis (GRA) for
optimization

(6) Confirmatory runs to validate the results attained

3. Methodology and Implementation

3.1. Material and Tool. Low-carbon mold steels contain
chromium and nickel as the main alloying elements and are
classified in group P steels. +ese steels are usually nitrided
or carburized to attain the desirable qualities.+ese steels are
good in machinability as they can be easily machined into
complex and large molds and dies. +ey are mostly used in
injection molds and die casting. Due to its wide range of
applications, prehardened UNS T51620 steel is taken as the
work material. +e material hardness ranges between 30 and
40 HRC. Rectangular work material of dimensions
75mm× 30mm× 12mm is taken for machining. +e ele-
mental composition of the material is shown in Table 1. +e
material is found to have extensive applications in electronic
equipment, car accessories, and home appliances.

+e work material is hard in nature due to the presence
of manganese and nickel in higher percentages followed by
carbon content as stated in Table 1. Based on the literature
survey, TiCN is taken as the cutting tool material having a
Rockwell hardness of 88.

3.2. Controllable and Noncontrollable Parameters. A ma-
chining operation is highly influenced by parameters such
as speed of spindle, feed, depth of cut, tool rake angle,
coolant flow rate, roughness, and tool life. Out of these,
certain parameters can be governed before the execution
of machining, and they are known as controllable pa-
rameters, whereas certain parameters vary based on the
influence of so-called controllable parameters. Such de-
pendent parameters are known as noncontrollable factors.
In this study, the controllable factors are speed of the
spindle (A), depth of cut (B), feed (C), and flow rate of
coolant (D). +e noncontrollable factors or responses are
taken as surface roughness (Ra), material removal rate
(MRR), and power consumed (Pc). +e levels of the se-
lected controllable parameters are finalized based on the
manufacturer’s specifications and researches carried out
so far.

+e controllable parameters identified are feed (mm/
min), spindle speed (rpm), depth of cut (mm), and flow rate
of coolant (l/min). Figure 1 shows the trial runs conducted in
a 3-axis vertical milling centre. A surface tester (Mitutoyo) is
employed for measuring the roughness of the machined.
Figure 2 shows the experimental runs conducted on the
work material. +e surface tester has a resolution varying
from 0.01 microns to 0.3 microns. +e average roughness
value (Ra) is considered for the analysis.

3.3. Design Matrix. Experimental iterations were based on
Box–Behnken model. +e controllable parameters are
assigned with three levels, and two responses are considered
as detailed in Table 2.+e sequence of experimental runs and
responses are shown in Table 3.

4. Results and Discussions

+e parametric effects on the responses are discussed in-
dividually in the following sections. For each response,
optimized level of machining parameters based on desir-
ability function. +e competency of the desirability function
is validated by analysis of variance (ANOVA).

4.1. Response Surface Model for the Prediction of Surface
Roughness. +e ANOVA analysis for roughness (Ra) is
given in Table 4.

“F-value” of 636600 with “P value” below 0.0001 con-
firms the significance of the desirability function. +e
function is said to be insignificant if the values are greater
than 0.10. In other words, a 0.01% chance is there that an

Table 1: Chemical composition.

Mn Cr Ni C Si Mo S
0.86 0.033 0.8 0.36 0.44 0.9 0.35

Figure 1: Trial runs conducted.

Figure 2: Measurement of roughness.
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Table 3: Experimental runs and responses.

A (rpm) B (mm) C (mm/min) D (l/min) Ra (microns) MRR (mm3/min) Pc (HP)
1850 0.2 1000 6 4.217 0.2361 0.207
1850 0.6 2000 6 2.650 1.2931 1.408
1200 0.4 1000 6 4.797 0.7826 0.751
2500 0.4 2000 6 2.070 0.7466 0.865
2500 0.4 1500 4 2.746 0.6249 0.635
1200 0.4 2000 6 4.550 0.8636 1.026
1850 0.4 1500 6 3.434 0.7646 0.808
1850 0.2 1500 4 4.646 0.1954 0.253
1850 0.4 1500 6 3.434 0.7646 0.808
1850 0.4 1500 6 3.434 0.7646 0.808
1200 0.2 1500 6 5.334 0.3351 0.425
2500 0.4 1500 8 1.642 0.7873 0.819
1850 0.2 1500 8 3.542 0.3578 0.437
2500 0.6 1500 6 1.534 1.1941 1.190
1200 0.4 1500 8 4.122 0.9043 0.981
1850 0.6 1000 6 2.897 1.2121 1.133
1850 0.4 1000 4 4.109 0.6429 0.578
1850 0.4 2000 8 2.758 0.8863 1.037
1850 0.4 1000 8 3.005 0.8053 0.762
1200 0.6 1500 6 4.014 1.3111 1.351
1200 0.4 1500 4 5.226 0.7419 0.796
2500 0.2 1500 6 2.854 0.2181 0.264
1850 0.6 1500 8 2.222 1.3338 1.363
1850 0.2 2000 6 3.970 0.3171 0.482
1850 0.4 1500 6 3.434 0.7646 0.808
1850 0.6 1500 4 3.326 1.1714 1.179
1850 0.4 1500 6 3.434 0.7646 0.808
1850 0.4 2000 4 3.862 0.7239 0.853
2500 0.4 1000 6 2.317 0.6656 0.590

Table 2: Machining parameters and their levels.

Parameters Unit Level 1 Level 2 Level 3
Spindle speed (A) rpm 1200 1850 2500
Depth of cut (B) mm 0.2 0.4 0.6
Feed rate (C) mm/min 1000 1500 2000
Coolant flow rate (D) l/min 4 6 8

Table 4: Roughness (Ra)—analysis of variance.

Response surface linear model
Analysis of variance

Source Sum of squares df Mean square F-value P value
Model 27.52382748 4 6.88095687 636600.00 <0.0001 Significant
A 18.45715248 1 18.45715248 628620.00 <0.0001
B 5.2272 1 5.2272 68590 <0.0001
C 0.183027 1 0.183027 5998618.94 <0.0001
D 3.656448 1 3.656448 1834573.15 <0.0001
Residual error 1.58333 24 0
Lack of fit 0 20 0
Pure error 0 4 0
Cor total 27.52382748 28
Standard deviation 0.000397911 R2 0.999998975
Mean 0.54264 Adj R2 0.99999754
CV (%) 0.073328765 Pred R2 NA
PRESS NA Adequate precision 3152.502951
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insignificant effect may arise due to noise. Moreover, R2, Adj
R2, and Pred R2 values indicate a positive approach towards
its higher efficacy, and the values are close to 1. +e surface
interaction plots shown below provide a lucid view on the
interaction between machining parameters and the response
Ra.

4.1.1. Parameter Interaction Effects. +e interaction graph
for parameters A and B on response Ra is shown in Figure 3.
Minimum roughness is achieved when spindle speed is at its
maximum level of 2500 rpm with feed rate maintained at its
intermediate level of 1500mm/min. Any deviation from the
above-mentioned level resulted in an adverse effect on re-
sponse Ra. It is noteworthy to observe that parameter B
provides a flexible range between 0.4mm and 0.6mm. +e
interaction graph for D and C on response Ra is depicted in
Figure 4. +e effect of parameter D is found to have the least
contribution on Ra when measured with supplementary
parameters considered.

Figure 5 shows the interaction graph of parameters A
and D on Ra. When the level of parameter D is maintained
between 4 l/min to 8 l/min, it resulted in achieving minimum
surface roughness but is found to be associated with the
influence of spindle speed. Better results are attained when
parameter A is increased gradually along with parameter D.

+e effect of parameters C and D is depicted in Figure 6.
On careful analysis, one can find that parameterC dominates
over parameter B influencing the response Ra. From ex-
perimental runs 3 and 6, one can find that increasing the
level of feed rate minimizes the roughness. At the same time,
experimental run 28 exhibits the influence of parameterA on
surface roughness when the other parameters are kept at the
same level as stated in runs 3 and 6. +is provides a lucid
view on the influencing parameters affecting the response
Ra. In this case, the order of prominent parameters influ-
encing the response Ra is in the order of parameters A and C
followed by parameters B and D.

4.1.2. Predicted Optimum Parameters for Ra. Table 5 shows
the optimized level of machining parameters.

4.2. Response Surface Model for the Prediction of MRR.
+eANOVA analysis for the responseMRR is highlighted in
Table 6. “F-value” of 668091 with “P-value” below 0.0001
shows the significance of the developed model. +e function
is said to be insignificant if the values are greater than 0.10. In
other words, a 0.01% chance is there that an insignificant
effect may arise due to noise. Moreover, R2, Adj R2, and Pred
R2 values indicates a positive approach towards its higher
efficacy as the values are close to 1. +e surface interaction
plots shown below provide a lucid view on the interaction
between machining parameters and the response MRR.

4.2.1. Parameter Interaction Effects. +e following interac-
tion graph depicts the effect of the parameters on MRR.
Figure 7 reflects the interaction effect of parameters A and B
on MRR. Experimental runs 1, 16, and 17 show a gradual

increase inMRRwhen parametersA and C are kept at level 1
and parameter C is gradually increased. On the other hand,
in experimental runs 5, 11, and 13, the level of parameterA is
changed, and other parameters are assigned at level 1. It is
observed that though there is an increase in MRR, the rate of
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increase seen is much lower than in the former case. +is
evidence established firmly that parameter C plays a very
prominent role compared to parameter A.

+e machining effect of parameters C and B on MRR is
shown in Figure 8. Experimental runs 4, 5, and 29 show a
gradual increase in MRR when parameters A and B are
maintained at 2500 rpm, 0.4mm, respectively, and param-
eter C is gradually increased. Whereas, in experimental runs
8, 9, and 26, the level of parameters A and C are kept
constant (1850 rpm and 1500mm/min), and parameter B is
varied. It is observed that there is a drastic increase in MRR
when compared with that of parameter C. +is evidence
established firmly that parameter B plays a very prominent
role compared to parameter C.

Figure 9 describes the machining effect of parameters D
and C on MRR. Experimental runs 8 and 13, 18 and 28, and
23 and 26 clearly depict the effect of parameterDwhen other
parameters are kept constant. In the above-stated experi-
mental runs, a pattern of increase in MRR can be observed.
+e applied coolant enhances the quantity of material re-
moved by washing off the removed materials and heat
generated while machining. On the other hand, in experi-
mental runs 3 and 6 and runs 17 and 28, the level of pa-
rameter C is alone changed and found that the application of
coolant enhances MRR compared to parameter C but de-
pends on parameters B and A.

+e machining effect of parameters A and D on MRR is
shown in Figure 10. Experimental runs 8 and 13, 18 and 28,
and 23 and 26 clearly depict the effect of coolant flow rate
when other parameters are kept constant. In the above-
stated experimental runs, an increase in the MRR is ob-
served. On the other hand, experimental runs 11 and 22, 3
and 29, and 14 and 20 show an increase in MRR when
spindle speed is varied keeping all other parameters
constant.

4.2.2. Predicted Optimized Set of Machining Parameters for
MRR. Table 7 shows the optimized level of machining
parameters.

4.3. Response Surface Model for the Prediction of Power
Consumed(Pc). Table 8 reflects the ANOVA analysis for the
response, Pc. “F-value” of 534600.00 with “P-value” below
0.0001 highlights the significance of the developed func-
tion. +e function is said to be insignificant if the values are
greater than 0.10. In other words, a 0.01% chance is there
that an insignificant effect may arise due to noise. More-
over, R2, Adj R2, and Pred R2 values indicate a positive
approach towards its higher efficacy as the values are close
to 1. +e interaction graphs shown below provide a lucid
view on the interaction between machining parameters and
the response Pc.

4.3.1. Parameter Interaction Effects. Figures 11 and 12 in-
terpret the interaction effect of machining parameters on
power consumption (Pc). Figure 11 reflects the machining
effect of parameters A and B on Pc. Experimental runs 8 and
9, 12 and 22, and 11 and 15 show a rapid increase in power
consumption when feed rate is increased, while other pa-
rameters are taken as constant. +is shows that an increased
parameter B increases the force of cutting, thereby con-
suming more power. On the other hand, in experimental
runs 12, 15, and 17 when the level of parameter A is changed
and other parameters are kept constant, an increase in power
consumption is observed as parameter A increases. But the
impact on power consumption is a little lower when
compared to parameter B.

Figure 12 reflects the effect of parameters B and C on
power consumption. Experimental runs 4, 5, and 29 show a
rapid increase in power consumption when parameter C is
increased while other parameters are taken as constant. +is
indicates that an increase in parameter C considerably in-
creases power consumption due to drastic variations in
cutting forces. On the other hand, in experimental runs 8, 9,
and 26 parameter A is changed, and other parameters are
assigned as constant. From the experimental runs, it is
observed that though parameter A affects power con-
sumption directly, it is highly influenced parameter B fol-
lowed by C.

In Figure 13, the machining behaviour of parameters D
and C on Pc is shown. Experimental runs 8 and 13, 18 and 28,
and 23 and 26 clearly depict the effect of parameter D when
other parameters are kept constant. In the above-stated
experimental runs, an increase in power consumption is
observed in the above-mentioned runs. +is proves that
coolant contributes negligibly in addressing power con-
sumption. On the other hand, in experimental runs 3 and 6
and runs 17 and 28, the level of parameterC is alone changed
and is observed that an increase in parameter C on Pc.

Figure 14 represents the machining effect of parameters
A and D and coolant on Pc. Experimental runs 8 and 13, 18
and 28, and 23 and 26 clearly depict the effect of parameterD
when other parameters are kept constant. In the above-
stated experimental runs, it is observed that coolant
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Table 5: Optimized level of parameters for roughness.

A (rpm) B (mm) C (mm/min) D (l/min) Ra (microns)
2495.75 0.47 1000.01 8 1.5439
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behaviour varies depending upon the combination of other
parameters. On the other hand, experimental runs 11 and 22,
3 and 29, and 14 and 20 show a decrease in Pc when pa-
rameter A is increased.

4.3.2. Predicted Optimized Set of Machining Parameters for
Pc. Table 9 shows the optimized level of machining
parameters.

Table 6: Material removal rate (MRR)—analysis of variance.

Response surface linear model
Analysis of variance table

Source Sum of squares df Mean square F-value P value
Model 2.99759928 4 0.74939982 668091.1902 <0.0001 Significant
A 0.041067 1 0.041067 1034328.952 <0.0001
B 2.857728 1 2.857728 749879.2755 <0.0001
C 0.019683 1 0.019683 430180.4257 <0.0001
D 0.07912128 1 0.07912128 636600.00 <0.0001
Residual error 1.87633 24 0
Lack of fit 0 20 0
Pure error 0 4 0
Cor total 2.99759928 28
Standard deviation 0.000697911 R2 0.98768975
Mean 0.54264 Adj R2 0.98524754
CV (%) 0.073328765 Pred R2 NA
PRESS NA Adequate precision 2152.502951
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Table 7: Optimized level of parameters for MRR.

A (rpm) B (mm) C (mm/min) D (l/min) MRR (IPM)
2495.75 0.47 1000.01 8 0.916658

Table 8: Power consumed (Pc)—ANOVA.

Analysis of variance
Source Sum of squares df Mean square F-value P value
Model 2.9792694 4 0.74481735 534600.00 <0.0001 Significant
A 0.07795632 1 0.07795632 512366.00 <0.0001
B 2.572428 1 2.572428 636600.00 <0.0001
C 0.226875 1 0.226875 506366.00 <0.0001
D 0.10201008 1 0.10201008 47690.00 <0.0001
Residual error 3.87633 24 0
Lack of fit 0 20 0
Pure error 0 4 0
Cor total 2.9792694 28
Standard deviation 0.000786511 R2 0.98557689
Mean 0.57264 Adj R2 0.95952475
CV (%) 0.083328765 Pred R2 NA
PRESS NA Adequate precision 3152.502951
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5. Optimization of Parameters by Grey
Regression Analysis

+e following steps are followed to arrive at the optimal
solutions:

(1) Normalization of responses: in this step, preprocessing
of data is performed based on the objective function
defined. If the normalization or data preprocessing is
based on the “larger the better” function, then it is
computed based on equation (1). If the normalization
or data preprocessing is based on “smaller the better”
function, then it is computed based on equation (2).
Normalization is a method to arrive at a comparable
data set from the original set of data reducing the
percentage of variation for ease of analysis.

Xi(k) �
xi(k) − min xi(k)

maxxi(k) − min xi(k)
, (1)

Xi(k) �
maxxi(k) − xi(k)

maxxi(k) − min xi(k)
, (2)

where i� 1, . . ., m, k� 1, . . ., n, m is the number of
experimental data, and n is the number of responses.
Xi(k) represents the value after data preprocessing;
xi(k) represents the original sequence data; max xi
(k) is the largest value of xi (k); and min xi (k) is the
minimal value.

(2) Computation of deviation sequence: based on re-
sponses, “smaller the better” option is applied for Ra
and Pc whereas for MRR, the “larger the better”
option is applied. In this step, the deviation is cal-
culated for normalized values. In this, for each re-
sponse, the deviation in each case is recorded with
respect to the higher normalized value attained.

(3) Computation of grey relational coefficients: the grey
regression coefficients are calculated using the re-
lation shown in equation (3): Here, ξi (k) is the grey
relational coefficient. Δmin and Δmax are the
minimum and maximum values of absolute differ-
ences. And, ψ is 0.5, which is the distinguishing or
identification coefficient that usually ranges from 0
to 1:

Table 9: Optimized level of parameters for power consumption (Pc).

A (rpm) B (mm) C (mm/min) D (l/min) Pc (HP)
2495.75 0.47 1000.01 8 0.843122

Table 10: Grey regression analysis.

Normalized values Deviation sequence Grey relation coefficients
Grey relational grade Rank

Ra PC MRR Ra Pc MRR Ra PC MRR
0.294 1.000 0.976 0.706 0.000 0.024 0.415 1.000 0.954 0.790 2
0.706 0.000 0.096 0.294 1.000 0.904 0.630 0.333 0.356 0.440 26
0.141 0.547 0.521 0.859 0.453 0.479 0.368 0.525 0.511 0.468 22
0.859 0.453 0.551 0.141 0.547 0.449 0.780 0.477 0.527 0.595 10
0.681 0.644 0.652 0.319 0.356 0.348 0.611 0.584 0.590 0.595 9
0.206 0.318 0.453 0.794 0.682 0.547 0.386 0.423 0.478 0.429 27
0.500 0.500 0.536 0.500 0.500 0.464 0.500 0.500 0.519 0.506 14
0.181 0.962 1.010 0.819 0.038 -0.010 0.379 0.930 1.020 0.776 3
0.500 0.500 0.536 0.500 0.500 0.464 0.500 0.500 0.519 0.506 14
0.500 0.500 0.536 0.500 0.500 0.464 0.500 0.500 0.519 0.506 14
0.000 0.818 0.894 1.000 0.182 0.106 0.333 0.734 0.824 0.630 7
0.972 0.490 0.517 0.028 0.510 0.483 0.946 0.495 0.509 0.650 6
0.472 0.809 0.875 0.528 0.191 0.125 0.486 0.723 0.799 0.670 4
1.000 0.182 0.178 0.000 0.818 0.822 1.000 0.379 0.378 0.586 11
0.319 0.356 0.420 0.681 0.644 0.580 0.423 0.437 0.463 0.441 25
0.641 0.229 0.163 0.359 0.771 0.837 0.582 0.393 0.374 0.450 24
0.322 0.691 0.637 0.678 0.309 0.363 0.425 0.618 0.580 0.541 12
0.678 0.309 0.435 0.322 0.691 0.565 0.608 0.420 0.469 0.499 19
0.613 0.538 0.502 0.387 0.462 0.498 0.564 0.520 0.501 0.528 13
0.347 0.047 0.081 0.653 0.953 0.919 0.434 0.344 0.352 0.377 29
0.028 0.510 0.555 0.972 0.490 0.445 0.340 0.505 0.529 0.458 23
0.653 0.953 0.991 0.347 0.047 0.009 0.590 0.913 0.982 0.829 1
0.819 0.038 0.062 0.181 0.962 0.938 0.734 0.342 0.348 0.475 21
0.359 0.771 0.908 0.641 0.229 0.092 0.438 0.686 0.845 0.656 5
0.500 0.500 0.536 0.500 0.500 0.464 0.500 0.500 0.519 0.506 14
0.528 0.191 0.197 0.472 0.809 0.803 0.515 0.382 0.384 0.427 28
0.500 0.500 0.536 0.500 0.500 0.464 0.500 0.500 0.519 0.506 14
0.387 0.462 0.570 0.613 0.538 0.430 0.449 0.482 0.538 0.490 20
0.794 0.682 0.618 0.206 0.318 0.382 0.708 0.611 0.567 0.629 8
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ξi(k) �
Δmin + ψΔmax
Δoi(k) + ψΔmax

. (3)

(4) Computation of grey relational grade: the grey re-
lational grade (c) represents the correlation level
between the reference and comparability sequences.
In this stage, a multiobjective function is converted
into a single-objective function. +e following
equation is the governing equation for arriving at
grey relational grade:

ci �
1
n

􏽘

n

k�1
ξi(k). (4)

(5) Optimal parameters: in this step, rank is identified
for each set of values. Based on the rank attained, the
optimized level is easily figured out which provides
the optimum solution by considering all responses
together.

Table 10 shows the grey regression analysis performed
on the experimental values.

5.1. Optimized Set of Parameters Using Grey Regression
Analysis (GRA). From Table 10, the highest rank is con-
tributed by the 22nd experimental run, which includes the
following combination of parameters (Table 11).

6. Confirmatory Runs

To validate the above, confirmatory runs were conducted,
and Table 12 shows the results attained.

7. Conclusions

+e machining parameter optimization is performed on the
low-carbon mold steel in CNC end milling. +e responses
roughness, MRR, power consumption, and tool life were
optimized. +e optimization process includes responses that
have contradictory effect on each other. For example, the
objective function needs to be minimum for optimizing
roughness and power to arrive at minimum machining cost.
At the same time, the production time taken must also be

minimum where the material removal rate comes into play.
+e objective function for material removal rate is always
maximum, which is opposite to the previous one. +erefore,
the process becomes complex, and to arrive at the optimal
solution, one has to approach a multiobjective function. In
this experimental analysis, the following observations are
found to be notable:

(1) Minimum surface roughness attained in the com-
bination of 2500 rpm, 0.6mm, 1500mm/min, and
6 l/min

(2) Minimum power consumption attained in the
combination of 1850 rpm, 0.2mm, 1000mm/min,
and 6 l/min

(3) Maximum material removal attained in the com-
bination of 1850 rpm, 0.6mm, 1500mm/min, and
8 l/min

(4) All the above cases stand valid till they are treated as
single responses.

(5) In multiobjective optimization, the optimum level is
achieved at 2495.75 rpm, 0.47mm, 1000mm/min,
and 8 l/min using Box–Behnken design

(6) In GRA, better results are attained at 2500 rpm,
0.2mm, 1500mm/min, and 6 l/min

(7) Since the percentage deviation is within 10% both
optimization techniques can be considered for ma-
chining of the investigated material.

Data Availability

+e data used to support the findings of this study are in-
cluded within the article.
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Table 11: Optimized parameter by GRA.

A (rpm) B (mm) C (mm/min) D (l/min)
2500 0.2 1500 6

Table 12: Confirmatory runs.

Optimization tool A (rpm) B (mm) C (mm/min) D (l/min) Ra (microns) MRR (IPM) Pc (HP)
Box–Behnken 2495.75 0.47 1000.01 8 1.543 0.916658 0.843122
GRA 2500 0.2 1500 6 1.398 0.8296 0.7961
Deviation 0.154 0.087 0.047
% deviation 10 9 6
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