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Abstract

This article discusses some difficulties in the implementation of combinatorial algorithms

associated with the choice of all elements with certain properties among the elements of a set with

great cardinality.The problem has been resolved by using multidimensional arrays. Illustration

of the method is a solution of the problem of obtaining one representative from each equivalence

class with respect to the described in the article equivalence relation in the set of all m ∼ n

binary matrices. This equivalence relation has an application in the mathematical modeling in

the textile industry.
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1 Introduction and Task Formulation

The following problem often occurs in computer science:

Problem 1.1. Let M be a finite set and let ∼ be an equivalence relation in M . Describe and
implement an algorithm that receives exactly one representative from each equivalence class with
respect to ∼.
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As a consequence of this problem follows the combinatorial problem of finding the cardinality of
the factor set M̃ = M/∼ consisting of all equivalence classes of M with respect of ∼.

We assume that for every x ∈M , there is a procedure K(x) which receives all elements of M , which
are equivalent to x.

Since M is a finite set, then there exists bijective mapping

b :↔ {1, 2, . . . , |M |} ,

which will call numbering function. Thus, each element of M uniquely corresponds to an element
of Boolean array H[ ] with size equal to the cardinality |M | of the set M . Moreover, the element
x ∈M is selected if H[b(x)] = 1 and x is not selected if H[b(x)] = 0.

The next algorithm is a modification of the well-known method, known as ”Sieve of Eratosthenes”
(see [1]-[2]) solves Problem 1.1.

Algorithm 1.2. Receives exactly one representative of each equivalence class of the factor-set
M̃ = M/∼.

Input: Finite set M

Output: Set N ⊆M

1. N := ∅;
2. Declare a Boolean array H[ ] with size equal to the cardinality |M | of the set M and put

H[b(x)] := 0 for all x ∈M ;

3. For every x ∈M such that H[b(x)] = 0 do

{ Begin of loop 1

4. N := N ∪ {x};
5. H[b(x)] := 1;

6. Using the procedure K(x) obtain the set Px = {y ∈M | y ∼ x};
7. For every y ∈ Px obtained in step 6 do

{ Begin of loop 2

8. H[b(y)] := 1;

End of loop 2 }
End of loop 1 }

9. End of the algorithm.

Algorithm 1.2 has a number of disadvantages, the main of which is that it is practically inapplicable
for programs when a sufficiently great number of elements is present in the base set M . This
limitation comes from the maximum integer, which can be used in the corresponding programming
environment. For example, by standard in the C++ language the biggest number of the type
unsigned long int is equal to 232 − 1, which in a number of cases is insufficient for the previously
defined array H[ ] to be completely addressed. The purpose of this article is to avoid this problem by
using a multidimensional Boolean array, the elements of which have a one-to-one correspondence to
the elements of the base set, with a much smaller range of the indices. There are many publications
related to multidimensional arrays, for example [3], but they are not used for our specific goals and
objectives. Another solution to the problem is the use of dynamic data structures or other special
programming techniques (see [4]-[6]), but it is not the subject of consideration in this article.
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Binary (or Boolean, or (0,1)-matrix) is a matrix whose elements are equal to 0 or 1.

Let Bm×n be the set of all m× n binary matrices. It is well known that

|Bm×n| = 2mn (1.1)

In this work, we will consider and solve the following special case of Problem 1.1:

Problem 1.3. Let Bm×n be the set of all m× n binary matrices and let X,Y ∈ Bm×n. We define
an equivalence relation ρ as follows: XρY if and only if we can obtain X from Y by a sequential
moving of the last row or column to the first place. Find the cardinality |Bm×n/ρ| of the factor-set

M̃ = Bm×n/ρ and receive a single representative of each equivalence class.

The proof that ρ is an equivalence relation is trivial and we will omit it here.

The equivalence classes of Bm×n by the equivalence relation ρ are a particular kind of double coset
(see [7]-[9]). They make use of substitutions group theory and linear representation of finite group
theory (see [8]-[9]).

When m = n, the elements of the factor-set M̃ = Bn×n/ρ put carry into practice in the textile
technology (see [10]-[11]).

In [12] an algorithm is shown, which utilizes theoretical graphical methods for finding the factor

set S̃ = Sn/ρ, where Sn ⊂ Bn×n is a set of all permutation matrices, i.e. binary matrices having
exactly one 1 on each row and each column. In [13] we extended this problem in the case when ρ
is an arbitrary permutation.

The author of this paper is not familiar with an existing a general formula expressed as a function of
m and n for finding |Bm×n/ρ|. The goal of this paper is to describe an effective algorithm for finding

the number of elements of the factor set M̃ = Bm×n/ρ, as well as finding a single representative
of each equivalence class. Here we will describe an algorithm, which overcomes some difficulties,
which would inevitably arise with sufficiently great m and n if we apply the classical algorithm
(Algorithm 1.2). The main difficulty arises from the great number of elements of M̃ = Bm×n/ρ with
comparatively small integers m and n, according to formula (1.1).

For undefined notions and definitions, we refer to [14]-[15].

2 Description of an Algorithm with the use of a Multi-
dimensional Array

Theorem 2.1. Let us denote by Pn the set

Pn = {0, 1, . . . , 2n − 1} (2.1)

Then a one-to-one correspondence (bijection) between the elements of the Cartesian product Pmn =
Pn × Pn × · · · × Pn︸ ︷︷ ︸

m

and the elements of the set Bm×n of all m× n binary matrices exists.

Proof. We consider the mapping α : Pmn → Bm×n, defined in the following way: If π ∈ Pmn and
π =< p1, p2, . . . , pm > then let us denote by zi, i = 1, 2, . . . ,m, the representation of the integer
pi in a binary notation, and if less than n digits 0 or 1 are necessary, we fill zi from the left with
insignificant zeros, so that zi will be written with exactly n digits. Since by definition, pi ∈ Pn, i.e.
0 ≤ pi ≤ 2n − 1, this will always be possible. Then we form an m × n binary matrix, so that the
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i-th row is zi, i = 1, 2, . . .m. Apparently this is a correctly defined mapping of Pmn to Bm×n. It is
clear that for different n-tuples from Pmn with the help of α we will obtain different matrices from
Bm×n, i.e. α is an injection. Conversely, rows of each binary matrix can be considered as natural
numbers, written in binary system by using exactly n digits 0 or 1, eventually with insignificant
zeros in the beginning, that is, these numbers belong to the set Pn = {0, 1, . . . , 2n − 1}. Therefore
each m× n Binary matrix corresponds to an m-tuple of numbers < p1, p2, . . . , pm >∈ Pnm, that is,
α is a surjection. Hence α is a bijection.

It is easy to see the validity of the following statement, which in fact shows the meaning of our
considerations.

Proposition 2.1. Let us denote by µ the maximum integer, which we use when coding the elements
of the set Bm×n by means of the bijection, defined in Theorem 2.1. Then, for sufficiently great m
and n, the following is valid:

µ = max (2n − 1,m)� |Bm×n| = 2mn (2.2)

Proof. Trivial.

Let a and b be integers, b 6= 0. With a/b we will denote the operation ”integer division” of a by b,
i.e. if the division has a remainder, then the fractional part is cut, and with a%b we will denote the

remainder when dividing a by b. In other words, if
a

b
= p+

q

b
, where p and q are integers, 0 ≤ q < b

then by definition a/b = p, a%b = q.

We consider the function
ξ(a) = (a%2) 2n−1 + a/2, (2.3)

where % and / are the defined in the above operations.

Definition 2.1. Let α be the defined in the proof of Theorem 2.1 bijection and let the functions
fr, fc : Pmn → Pmn be defined such that for every π =< p1, p2, . . . , pm >∈ Pmn

fr(π) =< pm, p1, p2, . . . pm−1 > (2.4)

fc(π) =< ξ(p1), ξ(p2), . . . , ξ(pm) >, (2.5)

where the function ξ(a) is the defined with (2.3).

Theorem 2.2. Let A ∈ Bm×n be an arbitrary m× n binary matrix and let α be the defined in the
proof of Theorem 2.1 bijection. Let us to get the matrices

B = α
(
fr
(
α−1(A)

))
(2.6)

and
C = α

(
fc
(
α−1(A)

))
(2.7)

Then B is obtained from A by moving the last row to the first place, and C is obtained from A by
moving the last column to the first place (respectively the first row or column becomes the second,
the second becomes the third respectively etc.).

Proof. Let π =< p1, p2, . . . , pm >= α−1(A) ∈ Pmn . Then the integer pi, 0 ≤ pi ≤ 2n − 1, i =
1, 2, . . . ,m will correspond to the i-th row of the matrix A. Then obviously, the matrix B = α(fr(<
p1, p2, . . . , pm >)) = α(< pm, p1, p2, . . . , pm−1 >) is obtained from A by moving the last row in the
place of the first one, and moving the remaining rows one row below.

Let pi ∈ Pn = {0, 1, . . . , 2n − 1}, i = 1, 2, . . . ,m. Then di = pi%2 gives the last digit of the binary
notation of the integer pi. If pi is written in binary notation with precisely n digits, optionally
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with insignificant zeros in the beginning, then by applying integer division of pi by 2, we practically
remove the last digit di and we move it to the first position, in case we multiply by 2n−1 and add
it to pi/2. This is, by definition, how the function ξ(pi) works. Hence, the m × n binary matrix
C = α(fc(< p1, p2, . . . , pm >)) = α(< ξ(p1), ξ(p2), . . . , ξ(pm) >)) is obtained from the matrix A by
moving the last column to the first position, and all the other columns are moved one column to
the right.

From the definitions of the functions fr, according to (2.4) and fc, according to (2.5) it is easy to
verify the validity of the following

Proposition 2.2. If by definition
f0
r (π) = f0

c (π) = π (2.8)

fkr (π) = fr
(
fk−1
r (π)

)
(2.9)

fkc (π) = fc
(
fk−1
c (π)

)
, (2.10)

where π ∈ Pmn and k is a positive integer, then

fmr (π) = π (2.11)

and
fnc (π) = π. (2.12)

Proof. Trivial.

As a direct consequence of Theorem 2.1, Theorem 2.2, Proposition 2.2 and their constructive proofs,
it follows that the following algorithm that finds exactly one representative of each equivalence class
with respect to the defined in Problem 1.3 equivalence relation ρ and that calculates the cardinality
of the factor set Bm×n/ρ.

Algorithm 2.3. Receives exactly one representative of each equivalence class of the factor-set
M̃ = M/ρ and calculates the cardinality of the factor set M̃ = M/ρ when m and n are given.

1. We declare the m-dimensional Boolean arrays W1 and W2 which we will be indexed by using
the elements of the set Pmn , i.e. W1[< p1, p2, . . . , pm >] will correspond to the element
< p1, p2, . . . , pm >∈ Pmn . We proceed analogically with the array W2.

2. Initially we take all elements of W1 and W2 to be 0. In W1 we will remember all elements
selected from Bm×n (one for each equivalence class) by changing W1[< p1, p2, . . . , pm >] to
1 if we have selected the element α(< p1, p2, . . . , pm >) for a representative of the respective
equivalence class. We will change the elements of W2 to 1 for each selection of an element
from Bm×n, i.e. for each π′′ ∈ Pmn , for which there exists π′ ∈ Pmn , such that W1[π′] = 1
and α(π′′)ρα(π′), or in other words, π′ and π′′ encode two different matrices of the same
equivalence class as we have chosen α(π′) for a representative of this equivalence class.

3. We declare the counter N , which we initialize by 0. In case of normal ending of the algorithm,
N will be showing the cardinality of the factor set Bm×n/ρ.

4. While a zero element exists in W2 do

{ Begin of loop 1

5. We choose the minimal π =< p1, π2, . . . , πm >∈ Pmn according to the lexicographic
order, for which W1[π] = 0.

6. W1[π] := 1;

7. N := N + 1;
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8. For i = 1, 2, . . . ,m do

{ Begin of loop 2

9. π = f ir(π).

10. For j = 1, 2, . . . , , n do

{ Begin of loop 3

11. π := f jc (π);

12. W2[π] := 1;

End of loop 3}
End of loop 2}

End of loop 1}
13. End of the algorithm.

3 Conclusions

Applying the above ideas, a computer program that receives a computer program that gets only
one representative from each equivalence class of the factor-set B̃n×n = Bn×n/ρ. The purpose of
these calculations was to describe and classify some textile structures [11]. The results relate to
obtaining quantitative estimation of all kinds of textile fabric.

In fact, the cardinality of the factor-set M coincides with an integer sequence noted in On-Line
Encyclopedia of Integer Sequences [16] as number A179043, namely

A179043={ 2, 7, 64, 4156, 1342208, 1908897152, 11488774559744, 288230376353050816,
29850020237398264483840, 12676506002282327791964489728,

21970710674130840874443091905462272, 154866286100907105149651981766316633972736, ... }
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