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Abstract

The maximum likelihood method in view of future data (i.e., the maximization of expected log-

likelihood) enables estimates of geometric distribution parameter. This estimator is defined as

an estimator in which n (number of data) in the maximum likelihood estimator is replaced with

(n + a0); a0 takes a value such as −1 or −0.5. The value of a0 reflects knowledge about the

range where the parameter is to be found. Therefore, when we know that the true parameter of

a population lie in a particular range, this method gives a larger expected log-likelihood than the

maximum likelihood estimator. Simple simulations show that this new estimator gives anticipated

results. The characteristic of the estimator with (n+ a0) is similar to that for the mean squared

error (MSE), that is, the expectation of the sum of the squared difference between the true

parameter and its estimate. This new methodology in which estimators are modified using some

constants for yielding better estimators in terms of prediction will contribute to various fields

where the number of data is not very large.
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1 Introduction

The maximum likelihood method does not always maximize the expected log-likelihood (page
35 in [1]). Hence, approaches other than the maximum likelihood method may be preferable if
estimations are need for the purpose of prediction. Such estimators are hereinafter referred to as
predictive estimators. For example, if the variance of a normal distribution is estimated, the “third
variance” gives a larger value of expected log-likelihood than the maximum likelihood variance and
unbiased variance ([2], Section 5.5 of [3]). Furthermore, to estimate the parameter of an exponential

distribution, the multiplication of the maximum likelihood estimator by
(
1− 1

n

)
(n is the number

of data) results in a larger value for the expected log-likelihood than simply using the maximum
likelihood estimator ([4]). Similar results are obtained with the binomial distribution ([5]).

This paper therefore presents better estimators than the maximum likelihood estimator for estimating
the geometric distribution parameter. Although these new estimators are better than the maximum
likelihood estimator in terms of expected log-likelihood, limitation criteria must be imposed. Section
2 shows that an approximate predictive estimator for the geometric distribution can be obtained.
Section 3 derives the conditions under which the predictive estimator can be used in numerical
simulations.

2 Predictive Estimator of Geometric Distribution

We begin with some basic definitions. For a geometric distribution, the probability density function
is

f(ξ) = p̃(1− p̃)ξ−1, (2.1)

and its expectation is
∞∑
r=1

rf(r) =
1

p̃
. (2.2)

The random variable which obeys the probability density function (f(ξ)) is denoted X. The
realization (i.e., data) of this random variable is denoted by {xi} (1 ≤ i ≤ n). Given these data,
the log-likelihood (l(p|{xi})) of p is

l(p|{xi}) = nlog(p) + log(1− p)
n∑

i=1

(xi − 1). (2.3)

To derive the value of p which maximizes this value, the above equation is differentiated with respect
to p and set equal to 0. The result is

n

p
−
∑n

i=1(xi − 1)

1− p
= 0. (2.4)

Hence, we have the maximum likelihood estimator:

p̂ =
n∑n

i=1 xi
, (2.5)

where p̂ indicates the maximum likelihood estimator given the data ({xi} (1 ≤ i ≤ n)).

Next, future data are denoted {x∗
i } (1 ≤ i ≤ m). Given these data, the log-likelihood (l(p̂|{x∗

i }))
of p̂ is represented as

l(p̂|{x∗
i })

m
= log(p̂) + log(1− p̂)

( m∑
i=1

x∗
i

m
− 1
)
. (2.6)
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Let the estimate p̂ that maximizes this value be denoted p̂∗. Then p̂∗ is written as

p̂∗ =
m∑m
i=1 x

∗
i

. (2.7)

Because the number of future data is infinite, we set m to infinity. Under this condition, p̂∗ is
denoted p̂∗∞ and hence Eq. (2.2) results in

p̂∗∞ = lim
m→∞

m∑m
i=1 x

∗
i

= p̃. (2.8)

That is, the maximum likelihood estimator given by an infinite number of future data is the true
parameter of the population (p̃). Substitution of Eq. (2.8) into Eq. (2.6) yields

lim
m→∞

l(p̂|{x∗
i })

m
= log(p̂) + log(1− p̂)

(1
p̃
− 1
)
. (2.9)

However, given an infinite number of future data, p̂ given by Eq. (2.5) is not guaranteed to be the

optimal estimator. This optimal estimator is denoted by αp̂ =
αn∑n
i=1 xi

; here α is a constant less

than or equal to 1. Therefore, the log-likelihood is

lim
m→∞

l∗(αp̂)

m
= log(αp̂) + log(1− αp̂)

(1
p̃
− 1
)
. (2.10)

Substitution of Eq. (2.5) results in

lim
m→∞

l∗(αp̂)

m
= log

( αn∑n
i=1 xi

)
+ log

(
1− αn∑n

i=1 xi

)(1
p̃
− 1
)
. (2.11)

If α is larger than 1, the argument of the log in the second term on the right-hand side may be
negative. Hence, α must be less than or equal to 1. Moreover, if all of the elements of {xi} are
1, use of the maximum likelihood method (i.e., α = 1) causes the argument of the log factor on
the right-hand side of Eq. (2.11) to be 0. Therefore, the value of Eq. (2.11) becomes −∞ whatever
the value of p̃ may be. Indeed, if all elements of {xi} are 1, p̃ cannot be estimated from the log-
likelihood of the maximum likelihood estimator. Thus, if all elements of {xi} are 1, an estimate of
the parameter using the method suggested here is not possible.

To maximize Eq. (2.10), its right-hand side is differentiated with respect to α and set equal to 0.
We then have

α̂p̂ = p̃. (2.12)

This equation indicates that p̂ multiplied by the optimal value of α obviously gives the true value
of p. Because the value of p̃ is unknown in most situations, Eq. (2.12) cannot be calculated.

Thus, let us consider the mean of lim
m→∞

l∗(αp̂)

m
given by sampling x an infinite number of times;

that is, the expectation of l∗(αp̂) is required. Note that as data in which all the elements of {xi} are
1 are not treated here, the sampling must be redone. This expectation, calculated using Eq. (2.11),
is then

Ex

[
lim

m→∞

l∗(αp̂)

m

]
= Ex

[
log
( αn∑n

i=1 xi

)
+ log

(
1− αn∑n

i=1 xi

)(1
p̃
− 1
)]

. (2.13)

Such expectations are used in deriving AIC. For example, EG(xn) on page 55 in [1] is such an
expectation.

If Xi has a geometric distribution,

n∑
i=1

Xi obeys the negative binomial distribution (e.g., page 87 in
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[6]). Hence, Eq. (2.13) is transformed into

Ex

[
lim

m→∞

l∗(αp̂)

m

]
=

∞∑
j=n+1

(
log
(αn

j

)
+
(1
p̃
− 1
)
log
(
1− αn

j

))
j−1Cn−1p̃

n(1− p̃)j−n

∞∑
j=n+1

j−1Cn−1p̃
n(1− p̃)j−n

. (2.14)

Note that the summation on the right-hand side of this equation begins with j = n+ 1 instead of

j = n. Additionally, a standardization using
∞∑

j=n+1

j−1Cn−1p̃
n(1− p̃)j−n is performed. Using this

strategy, if all the elements of {xi} are 1, the sampling is performed again. To derive an α that
maximizes Eq. (2.14), we differentiate this equation with respect to α and set it to 0 to yield

∞∑
j=n+1

(
1

α
−
(1
p̃
− 1
) n

j − αn

)
j−1Cn−1p̃

n(1− p̃)j−n = 0. (2.15)

Although it is not easy to obtain analytically, we denote solutions for α by α̂.

Next, we replace p̂ in Eq. (2.10) with p̂+ expressing it in the form

p̂+ =
n+ a0∑n

i=1 xi
, (2.16)

where a0 is a constant. Hence, Eq. (2.14) is transformed into

Ex

[
lim

m→∞

l∗

(
α

n+ a0∑n
i=1 xi

)
m

]

=

∞∑
j=n+1

(
log

(
α
n+ a0

j

)
+
(1
p̃
− 1
)
log

(
1− α

n+ a0

j

))
j−1Cn−1p̃

n(1− p̃)j−n

∞∑
j=n+1

j−1Cn−1p̃
n(1− p̃)j−n

. (2.17)

This equation is then differentiated with respect to α and set equal to 0. We have

∞∑
j=n+1

(
1

α
−
(1
p̃
− 1
) n+ a0

j − α(n+ a0)

)
j−1Cn−1p̃

n(1− p̃)j−n = 0. (2.18)

If we set a0 = −1 and α = 1, the left-hand side of this equation becomes

∞∑
j=n+1

(
1−

(1
p̃
− 1
) n− 1

j − n+ 1

)
j−1Cn−1p̃

n(1− p̃)j−n. (2.19)

To simplify this sum, the following sum

∞∑
j=n+1

(
n− 1

j − n+ 1

)
j−1Cn−1p̃

n(1− p̃)j−n (2.20)

is evaluated using Mathematica 3.0 yielding the result (Fig. 1)

∞∑
j=n+1

(
n− 1

j − n+ 1

)
j−1Cn−1p̃

n(1− p̃)j−n = − p̃− np̃n − p̃n+1 + np̃n+1

1− p̃
. (2.21)
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Hence, if p̃n is assumed to be 0 and the result of this approximation is substituted into Eq. (2.19),
we have

∞∑
j=n

(
1−

(1
p̃
− 1
) n− 1

j − n+ 1

)
j−1Cn−1p̃

n(1− p̃)j−n ≈ 0. (2.22)

Therefore, with a0 = −1 and α = 1, Eq. (2.18) holds approximately regardless of the value of p̃.
This implies that p̂+ (Eq. (2.16)) with a0 = −1 is an approximate predictive estimator which can
be used even if the value of p̃ are unknown.

Fig. 1. Result of the calculation of Eq. (2.20) using Mathematica 3.0.

3 Numerical Simulation

Section 2 infers that for a0 = −1 and α = 1, Eq. (2.18) is satisfied approximately. This result,
however, is based on assuming p̃n is 0. To find out under which conditions p̃n is close to 0 and
whether the left-hand side of Eq. (2.18) is effectively 0, a numerical simulation is required.

Numerical simulations were performed setting α = 1 in Eq. (2.17), presuming a0 = 0 (maximum

likelihood estimator) or a0 = −1.0 (predictive estimator). The infinite sum

∞∑
j=n+1

is then approximated

by a finite sum

2,000∑
j=n+1

in the right-hand side of Eq. (2.17). As the results of this approximation are

close to those using the finite sum

1,000∑
j=n+1

, the use of finite sum

2,000∑
j=n+1

is justified. The value of p̃

is assumed to be one of the set {0.05, 0.1, 0.15, . . . , 0.95}. The value of Eq. (2.17) setting a0 = 0
is denoted llike and that setting a0 = −1 is denoted lpre. The values of (lpre − llike) are plotted
in Figs. 2 (left n = 5 and right n = 10), and 3(left n = 20 and right n = 30). The values of
(lpre− llike) are positive in certain intervals. Specifically if n = 5, the interval is 0.05 ≤ p̃ ≤ 0.55; for
n = 10, 0.05 ≤ p̃ ≤ 0.75 for n = 20, 0.05 ≤ p̃ ≤ 0.85; and for n = 30, 0.05 ≤ p̃ ≤ 0.90. As a0 = −1.0
is based on the assumption that 0 is a good approximation of p̃n, we presume that (lpre − llike)
takes a positive value when the value of p̃ is small and the value of n is large; the positive values
of (lpre − llike) mean that the predictive estimator (a0 = −1.0) performs better than the maximum
likelihood estimator (a0 = 0). Figs. 2 and 3 indicate that this assumption is reasonable.
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Fig. 2. Values of (lpre − llike) setting a0 = −1 in the predictive estimator; p̃ is assumed
to be {0.05, 0.1, 0.15, . . . , 0.95}. n = 5 (left) and n = 10 (right).

Fig. 3. As for Fig. 3 but with n = 20(left). n = 30(right).

To extend the interval over which the predictive estimator gives better results than the maximum
likelihood estimator, one possible strategy is to make the predictive estimator closer to the maximum
likelihood estimator. Assuming a0 = −0.5, we then obtain Figs. 4 and 5. For the various integer
values n, the values of (lpre − llike) are positive over certain intervals. Specifically, for n = 5 the
interval is 0.05 ≤ p̃ ≤ 0.65; for n = 10, it is 0.05 ≤ p̃ ≤ 0.80; n = 20, 0.05 ≤ p̃ ≤ 0.90; and n = 30,
0.05 ≤ p̃ ≤ 0.90. Compared with setting a0 = −1, setting a0 = −0.5 widens the interval over which
the predictive estimator yields better results that the maximum likelihood estimator. This result
shows that the predictive estimator should be adjusted depending on what is a priori known of p̃.

To offer a more realistic analysis of our predictive estimators and the maximum likelihood estimator,
we compared the values obtained from Eq. (2.17) given by the two estimators using pseudo-random
numbers obeying a geometric distribution. Setting the parameter for the geometric distribution
to p̃ = 0.3 and p̃ = 0.8, 10 data points were sampled from this population using pseudo-random
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numbers. If all of the 10 data points were 1, the sampling was redone. Using the sampled data,
the values of p̂+ were calculated setting either a0 = −1 or a0 = 0. Then, the log-likelihood,
assuming an infinite number of future data using p̂+, is given by either setting of p̂ in Eq. (2.9).
This calculation was performed 2, 000 times by altering the initial value of the pseudo-random
number and the average of the 2, 000 obtained log-likelihood values. This numerical simulation was
conducted 1, 000 times. The resultant log-likelihood histograms were generated (Figs. 6 and 7).
Setting p̃ = 0.3, the predictive estimator performs better than the maximum likelihood estimator.
In contrast, with p̃ = 0.8, the reverse trend is evident. This tendency coincides with that of Fig.
2(right).

Fig. 4. Values of (lpre − llike) setting a0 = −0.5 in the expression for the predictive
estimator with p̃ ∈ {0.05, 0.1, 0.15, . . . , 0.95}; left: n = 5, right: n = 10.

Fig. 5. Values of (lpre − llike) when a0 = −0.5 is set in the predictive estimator with
p̃ ∈ {0.05, 0.1, 0.15, . . . , 0.95}; left: n = 20, right: n = 30.
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Fig. 6. Comparison between the maximum likelihood estimator (a0 = 0) and the
predictive estimator (a0 = −1) in terms of the approximated expected log-likelihood
for n = 10 and p̃ = 0.3. The left histogram gives the distribution of 1, 000 simulated

values of the approximated expected log-likelihood given by the maximum likelihood
estimator. The average of these values is −2.097548 and the unbiased variance is

6.765919× 10−6. The right histogram gives the distribution of 1, 000 simulated values of
the approximated expected log-likelihood given by the predictive estimator. The
average of these values is −2.088503 and the unbiased variance is 3.116544× 10−6.

Fig. 7. As for Fig. 6 but with p̃ = 0.8. For the left histogram, the average is
−0.6596949 and the unbiased variance is 6.558547× 10−7. For the right histogram, the

average is −0.6677127 and the unbiased variance is 1.412698× 10−6.
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4 Conclusions

The following passage is taken from page 332 in [7]:

In general, since MSE is a function of the parameter, there will not be one “best”
estimator. Often, the MSEs of two estimators will cross each other, showing that
each estimator is better (with respect to the other) in only a portion of the parameter
space. However, even this partial information can sometimes provide guidelines for
choosing between estimators.

If “MSE” in the above quote is replaced with the “expected log-likelihood”, the passage would
represent our conclusions accurately:

(1) The value of the expected log-likelihood depends on the true values of the parameters. Hence,
these true values are usually needed to obtain predictive estimator values that strictly maximize
the expected log-likelihood ([5]). Estimates of the third variance ([2]) and parameter estimation of
the exponential distribution ([4]) are exceptional in that true parameter values are not required to
obtain the predictive estimator.
(2) A predictive estimator is not unique. For example, when estimating the parameter that specifies
the geometric distribution, an estimator of the form αp̂ (p̂ is the maximum likelihood estimator)
is assumed and Eq. (2.17) gives various predictive estimators by setting for example a0 = −1 or
a0 = −0.5. Moreover, although Eq. (2.17) is obtained, assuming Eq. (2.22) holds approximately,
other predictive estimators are given if an exact solution is found or another approximate expression
is generated.
(3) The relative merits of the predictive estimators depend on the interval over which the true
parameter exists.
(4) Using the characteristics shown in (3), knowing a little about the parameters helps in the choice
of predictive estimator which is more useful than the maximum likelihood estimator.

Definition 7.3.1 on page 330 in [7] contains θ. This indicates that MSE is also one of the criteria
derived given an infinite number of future data because such data are required for obtaining the true
parameters. Therefore, the estimator given by MSE is a predictive estimator in the broad sense
of the term. The difference between MSE and the expected log-likelihood is that the distance
between the true parameters given by the infinite number of future data and the estimates of
the parameters given by the data is defined in a different manner. However, both estimators are
expected to yield beneficial estimates for the purpose of prediction. Nevertheless, the maximum
likelihood estimator and the unbiased estimator play main roles in the conventional estimation.
This shows that we have not placed any emphasis on finding that the expected log-likelihood is “a
formal extension of the classical maximum likelihood” ([8]), except in the context of model selection
by AIC or related measures. One of the main reasons for this is that the maximum likelihood and
the unbiased estimators lead to mathematically tractable problems on most occasions, whereas
predictive estimators inherit the defects raised by (1), (2), and (3) above. Although the maximum
likelihood and the unbiased estimators do not always lead to useful results in terms of prediction,
we have used them in most situations because the maximum likelihood and the unbiased estimators
are treated in a mathematically simple and efficient manner. In this age of sophisticated computers,
this strategy requires rethinking. If we construct better estimators than the maximum likelihood
and the unbiased estimators by making good use of the abovementioned (4) and by using computers
skillfully, our estimations can extract more information from a small number of data.

Although MSE is thought not to be suitable for estimating scale parameters, it works well in
estimating location parameters (page 332 in [7]). Therefore, for general estimations of, for example,
variance, the expected log-likelihood should be the better choice. Hence, parameter estimation
for the purpose of maximizing expected log-likelihood takes advantage of the characteristics of
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estimation using MSE. That is, both estimations are based on goodness of fit to the infinite
number of future data. Both methods are justified qualitatively by considering that results given
by maximizing the expected log-likelihood are similar to those by minimizing MSE. Estimation
by maximizing the expected log-likelihood is, however, more sophisticated.

This consideration is made clearer by taking the variance estimation as an example. If MSE is used
in estimating the variance of the normal distribution, the maximum likelihood estimator proves to
be more favorable than the unbiased estimator (page 331 in [7]). Additionally, if we minimize MSE
with the condition that the estimator has the same form as the maximum likelihood variance, the
number of data n in the maximum likelihood variance is replaced with (n + 1) (page 414 in [9]).
That is, the optimal variance in terms of MSE is smaller than the maximum likelihood variance.
This results because MSE tends to give a larger penalty for overestimations and a smaller penalty
for underestimations (page 332 in [7]). Therefore, a reasonable assertion is that MSE leads to a
smaller variance than the maximum likelihood variance not because MSE gives the distance based
on an infinite number of future data but because the distance used here tends to result in a smaller
variance. Indeed, because the third variance is based on the expected log-likelihood, which is a
more effective criterion than the MSE, it results in a larger variance than the maximum likelihood
variance. That is, whereas the third variance inherits characteristics from variance estimation using
MSE in terms of considering the goodness of fit to an infinite number of future data, it redresses
the shortcomings of MSE which leads to underestimation. This is a good example showing that
although MSE is a useful criterion, the expected log-likelihood is more useful. For more general
discussions on variance estimation, refer to [10 - 14].

Although we are in the age of big data, the number of data is not very large in some domains
of science. For example, one experiment ranges over periods of one year to several decades in
agricultural science. We should make the best possible use of information contained in data for
leading to high predictability in such areas. For this purpose, prior knowledge that the true
parameters of a population lie in a particular range should be used efficiently. The methodology
suggested here, therefore, will contribute greatly to maximization of the beneficial use of data. To
realize this goal, the details of the predictive estimator based on the expected log-likelihood still
need to be examined from a number of different perspectives.
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