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Abstract

The operation of substitution consists of replacing a vertex of a graph by another graph. This

new graph is characterized through a function (of substitution) that can be self-definable. The

purpose of this work is to construct evolution operators for orbit {wk(G)}, where each element of

{wk(G)} is obtained by substituting each vertex of the previous element by a graph. Here, both

the initial graph G as the family of graphs of substitution, are known. In this paper, simple and

finite graphs will be used, framed in the graphs theory’s area.

Keywords: Graph; distribution operator; substitution of graph; realizable graph; discrete dynamical
systems.

2010 Mathematics Subject Classification: 05C10-47N60.

1 Introduction

The graphs to be considered will be simple and finite and with a nonempty set of edges. For a
graph G, V (G) denotes the set of vertices and E(G) denotes the set of edges. The cardinality of
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V (G) is called order of G and often it is written as |G|, and the cardinality of E(G) is called size of
G and generally it is written as |E(G)|. A (p, q) graph has order p and size q. Two vertices u and
v are called neighbors if {u, v} is an edge of G. For any vertex v of G, denote by Nv the neighbors
of v. Other concepts used in this work and not defined explicitly can be found in the references [1],
[2], [3], [4], [5], [6], [7].

2 Preliminares

Some essential concepts of this work are the following:

2.1 Substitution

Let suppose that G and K are two graphs disjointed by vertices. For a non isolated vertex v in
V (G) and a function s : Nv → V (K) it will be defined the substitution of the vertex v by the graph
K, as the graph M , denoted by G(v, s)K, such that:

(1) V (M) = (V (G) ∪ V (K))− {v} and

(2) E(M) = (E(G) ∪ E(K)− {vx/x ∈ Nv}) ∪ {xs(x)/x ∈ Nv}.
It is said that the vertex v is the substituted vertex by K in G under the function s and this function
is called substitution function. (See [5], [8]).

If v is isolated, then M = (G− v)⊕K.

Definition 2.1. Let V (G) = {v1, . . . , vn} and let H1, . . . , Hn be a sequence of pairwise vertex
disjoint graphs. Iteratively, we define the following graphs: M0 = G and Mk = Mk−1(vk, sk)Hk the
graph which is obtained by substitution of vertices of G by graphs Hi, 1 ≤ i ≤ k.

In other words, M1, denotes a graph obtained by substitution of only one vertex of G, M2 denotes
a graph obtained by substitution of only one vertex of M1, and so on. Note that every substituted
vertex must belong to V (G).

If v is isolated, then M = (G− v) ⊕K. An edge of the substitution graph Mp is an internal edge
if it is si(x)si(y), (see [8]).The edge in Mp that not an internal edge is called an external edge (see
[5]). Let G be a graph without isolated vertices, if each vertex v of G is substituted by a complete
graph with val(v) vertices, through an injective substitution function, then it will be said that the
graph G has been expanded (see [5]). When each vertex of a given G graph is substituted for a
copy of G through injective subtitution functions a special type of substitution is obtained which
will be called self-substitution and denoted by G(G). See more [8], [9].

2.2 Realizable Graph

A (p, q) graph G is said to be realizable on R3 if it is possible to distinguish a collection of p
different points of R3 , that correspond to the vertices of G and a collection of q curves, pairwise
disjoint except, possibly, in extreme points, that correspond to the edges of G such that if a curve γ
corresponds to the edge e = uv, then only extreme points of γ correspond to vertices of G, namely
u and v (More details [2], [3]).

If v is isolated, then M = (G− v) ⊕ K. In this work, we use the following realization concept.
Here, Ω represents the class of all simple and finte graphs. For a set A ⊂ R3 and for λ ∈ R+ the
neighborhood of A is defined, denoted by Aλ, as the subset R3 defined by

Aλ =
{
y ∈ R3 / ∃x ∈ A : d(x, y) < λ

}
.

Here d is the usual metric on R3.
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Remark 2.1. Aλ = ∪
x∈A

Vλ(x), where Vλ(x) =
{
y ∈ R3 / d(x, y) < λ

}
Example 2.1. A = {(1, 2, 1)} ∧ λ = 1 ⇒ A1 = V1 ((1, 2, 1)) :Ball of radius 1

Example 2.2. A = {(1, 2, 1), (2,−2, 3)} ∧ λ =
√
2, then: A√

2 = V√
2 ((1, 2, 1)) ∪ V√

2 (((2,−2, 3)) :

Union of two disjoint balls of radius
√
2.

2.3 Realization of a Graph

If G ∈ Ω and h : V (G) → R3 is a injective function, then the realization of G in R3, denoted by G∗,
is defined by

G∗ = {h(v)/v ∈ V (G)} ∪

 ∪
uv∈E(G)

h(u)h(v)

 ,

where
h(u)h(v) = {h(u) + t (h(v)− h(u)) /t ∈ [0, 1]} .

This realization must satisfy the following conditions:

(i) If G1, G2 ∈ Ω and G1 ̸= G2, then G∗
1 ∩G∗

2 = ϕ.

(ii) If G1, G2 ∈ Ω and G∗
1 ∩G∗

2 ̸= Φ, then G1 = G2.

(iii) Each G ∈ Ω admits one and only one realization G∗. This identification defines the dual class
Ω∗ =

{
G∗ ⊂ R3 / G ∈ Ω

}
.

2.4 Distance on Ω

If G1, G2 ∈ Ω, then the distance from G1 to G2, denoted by D (G1, G2) , is defined by D(G1, G2) =
Inf{λ ∈ R+/G∗

1 ⊂ (G∗
2)λ ∧G∗

2 ⊂ (G∗
1)λ}

Example 2.3. If G∗
1 = {i, j, k} ∪ ij ∪ ik ∪ jk and G∗

2 =
{
0, i

2

}
∪ 0 i

2
, then

D(G1, G2) = d

(
i

2
, j

)
=

√
5

2

Example 2.4. If G∗
1 = {0} and

G∗
2 =

{
j +mi / m ∈

{
0, 1

4
, 1
2
, 3
4
, 1
}}

∪

( ∪
t∈{1,2,3,4}

(
j + (t−1)i

4

) (
j + ti

4

))
, then D(G1, G2) = d(0, j+

i) =
√
2

2.5 Compactness

If A ⊂ R3 and ε ∈ R+, then the compactness of A, denoted by Aε, is the set {y ∈ R3/∃x ∈
A, d(x, y) < ϵ}. Here, d is usual distance on R3. Note that A ⊂ Aε and that Aε is compact
according to usual topology of R3.

If v is isolated, then M = (G− v)⊕K. For more details Compactness , see [6], [7].

2.6 Discrete Dynamical Systems

A discrete dynamical system is any set X together with a mapping f : X → X. In this work X is
always a set of graphs. In literature [6], X must have some topology on which f is continuous.

If v is isolated, then M = (G− v)⊕K. For more details Discrete dynamical systems, see [10], [11],
[6].
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2.7 Attractor Points

An orbit of f, f : Ω → Ω, being f continuous in topology of Ω, is any sequence of the form
{G, f(G), ..., fn(G), ...}.

Definition 2.2. A graph G is an attractor point of f if there exists some natural number n > 1
such that G = fn(G).

Lemma 2.5. G∗ is compact on R3.

Proof. See [9].

In the following proposition a distance on Ω will be constructed.

Proposition 2.1. The function D : Ω× Ω → R defined by
D(G1, G2) = Inf{λ ∈ R/G∗

1 ⊂ (G∗
2)λ ∧G∗

2 ⊂ (G∗
1)λ} , is a distance on Ω.

Proof. See [9].

Theorem 2.6. (Ω,D) is a complete metric space.

Proof. See [9].

Now, the following lemma is fundamental.

Lemma 2.7. If w is a function of Ω in Ω, defined by w(G) = Mp (G), where p is the order of G,
then w is a contraction in Ω.

Proof. See [9].

The existence of an attractor point to w is assured by the following theorem whose demonstration
could be found in [12].

Theorem 2.8. If M is a complete metric space andf : M → M is a contraction, then there exists
xf = lim

n−→∞
fn(x). Moreover, xf is independent of the choice of x in M . Also xf is the only fixed

point of f .

Theorem 2.9. If G ∈ Ω, then the orbit G −→ w(G) −→ ...wk(G) −→ ... has a single attractor
point Gw for w.

Proof. Apply Lemma 2.7 and Theorem 2.8.

See more [1], [7].

3 Evolution Operator

In this Section we introduce the concept of evolution operator and analyze its behavior. A evolution
operator of bipartite complete graphs is a pair (γ, λ) where γ is a continuous function (in the
topology induced by the distance D defined in the Theorem 2.6) of Ω in Ω that choose bipartite
complete graph of Ω and λ is a family ⟨s1, ..., sp⟩ of functions of substitution relating to each
bipartite complete preimage of the function γ such that if G is a bipartite complete graph K(r, s)
then γ(K(r, s)) = Mp(K(r, s)).This operator is constructed through substitution, as it follows:

If v is isolated, then M = (G− v) ⊕ K. If v1, ..., vp are the vertices of a bipartite complete graph
G and H1, ..., Hp is a sequence of graph with no vertices in common between them or with K(r, s)

4



Montenegro et al.; BJMCS, 11(4), 1-7, 2015; Article no.BJMCS.19677

then Mp(K(r, s)) will denoted the graph obtained by substitution of p vertices of K(r, s) by graphs
Hi, 1 ≤ i ≤ p, where M0(K(r, s)) = K(r, s), M1(K(r, s)), will denoted the graph obtained by
substitution of only a vertex ofK(r, s) through of a inyective function of substitution s1, M2(K(r, s))
will denoted the graph obtained by substitution of only a vertex of M1(K(r, s)) through of a through
of a inyective function of substitution s2, and so forth. Note that each substituted vertex must belong
to V (K(r, s)). Here the family (s1, ..., sp) of substitution functions determine λ and w determine γ,
where w is the continuous function built in the Lemma 2.7. Moreover, if the order of each Hi is pi,

then the order of Mp(K(r, s)) is
p∑

i=1

pi. Succesively the rest of the elements of the orbit {wk(K(r, s))}

are obtained.

Definition 3.1. The orbit {wk(K(r, s))} is said to be complete bipartite if each substitution
function is injective.

In order to illustrate the ideas above then we will give the following examples:

Example 3.1. Let G = K(1, 4), V (K(1, 4),H1 = K4,Hi = K1, 2 ≤ i ≤ 5. be. In that manner,
if V (K(1, 4)) = {v1, v2, v3, v4, v5} with bipartition A = {v1} and B = {v2, v3, v4, v5} with λ =
(s1, ..., s5) , si : Nvi → V (Hdeg(vi)), 1 ≤ i ≤ 5, injective function. Then w(K(1, 4)) = M8(K(1, 4))

In Fig. 1 the operator action is illustred.

Fig. 1. Operator action

Example 3.2. Let G = K(2, 3) and Hi, 1 ≤ i ≤ 5, be a family of complete graphs, disjoint
between them and with G, such that if v ∈ V (K(2, 3)) then Hi ≡ Kdeg(v)( where ≡ indicates graphs
isomorphism). That way, if V (K(2, 3)) = {v1, v2, v3, v4, v5} with bipartition A = {v1, v2} and
B = {v3, v4, v5} with λ = (s1, ..., s5) , si : Nvi → V (Hdeg(vi)), 1 ≤ i ≤ 5, injective function. Then
w(K(2, 3)) = M12(K(2, 3))

If v is isolated, then M = (G− v)⊕K. In Fig. 2 the operator action is illustrated.

The following theorems, in some way, characterize complete bipartite evolution operators.

Theorem 3.3. If {wk(K(m, p − m))},m < p, is a complete bipartite orbit, then for each k ,
nc

(
wk(K(m, p−m)

)
= max {m, p−m} .

Proof. Suppose that nc

(
wk(K(m, p−m))

)
= max {m, p−m} = m. By applying the evolution

operator to state wk(K(m, p−m)) a complete subgraph of order m is obtained. As the rest of the
blocks of wk+1(K(m, p − m)) has order m or p − m, we have that nc

(
wk+1(K(m, p−m))

)
= m.

Analogously if nc

(
wk(K(m, p−m))

)
= max {m, p−m} = p−m.
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Fig. 2. Operator action

Theorem 3.4. If {wk(K(m, p−m))},m < p, is a complete bipartite orbit, then for each k ,

dHB

(
wk(K(m, p−m)

)
=

ln

( ∑
v∈V (wk−1(K(m,p−m))

deg(v)

)
ln (|wk−1(K(m, p−m)|) ,

where dHB is the Hausdorff-Besicovitch dimension.

Proof. We have that:

|w(K(m, p−m))| =
∑

v∈V ((K(m,p−m))

deg(v).

in the same way: ∣∣w2(K(m, p−m))
∣∣ = ∑

v∈V (w((K(m,p−m)))

deg(v).

Generalizing, we have: ∣∣∣wk(K(m, p−m))
∣∣∣ = ∑

v∈V (wk−1(K(m,p−m)))

deg(v).

Therefore,

dHB(
(
wk(K(m, p−m))

)
) =

ln

( ∑
v∈V (wk−1(K(m,p−m)))

deg(v)

)
ln (|wk−1(K(m, p−m))|)

4 Conclusions

The present proposal presents a generalization of the concept of substitution [9], allowing the
approach of hypotheses in relation to infinite processes [13] and to enrich the asymptotic properties
of such discrete dynamical systems [11] and its relationship with the fractal dimensions [6], through
the definition of Hausdorff-Besicovitch dimension [14], [15] in this context.
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