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Abstract 
 

This paper study the two unit warm stand by system in which the demand of items increases arbitrarily 
for some random amount of duration. Whenever demands of items to which the machines are producing 
is heavy the standby unit also starts operation and when the demand becomes Normal, the standby unit 
which is in operation comes into standby mode. Failure of the standby unit remains undetected therefore 
the standby unit is inspected at random intervals of time. The failure can also be detected at the time of 
need of standby unit to become operative. If the standby unit is found to be failed in the inspection then it 
is sent for repair immediately. Failure time distribution for both operative and standby units are assumed 
to be negative exponential. Regenerative point techniques with markov renewal process is used to obtain 
various reliability characteristics of system. Repair time distribution of units failed during operation and 
standby position are same and assumed to be general. 

 

Keywords: Reliability; repair time; transition probability; regenerative points; mean sojourn time; MTSF; 
availability; markov renewal process. 
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1 Introduction 
 
Several authors including [1-5] engaged in the field of reliability have analysed various engineering systems 
by using different sets of assumptions like fault detection, inspection, preventive maintenance, critical 
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human error, etc. But in the real practical situations we can observe that some of the engineering systems 
operates accordingly to the demand of items which the machines are producing [1]. 
 
In [6], reliability characteristic of cold-standby redundant system was introduced. In [7], reliability modeling 
of 2-out-of-3 redundant system is introduced subject to degradation after repair. In [8], human error and 
common-cause failure modelling was established for a two-unit multiple system. In [9], stochastic analysis 
of a repairable system with three units and two repair facilities was introduced. In [10], some reliability 
parameters of a three state repairable system with environmental failure were evaluated.  
 
Keeping the above view, we analysed a two unit warm standby system in which the demand of items 
increases arbitrarily for some random amount of duration. Whenever the demand increases the standby unit 
becomes operative provided both machines are alive [3]. After each repair the unit goes for installation 
which takes random amount of time to complete. 
 
Using regenerative point technique with Markov renewal process, the following reliability characteristics of 
interest are obtained [2]. 
 

(1) Transition and steady state transition probabilities 
(2) Mean Sojourn times in various states 
(3) Mean time to system failure (MTSF) 
(4) Point wise and Steady state availability of the system 
(5) Expected Busy period of the repairman 
(6) Expected number of visits by the repairman 

 

2 Model Description and Assumptions 
 

(1) The system consists of two identical units of machines. Initially, one unit is operative and the other is 
kept as warm standby. 

(2) Whenever demands of items to which the machines are producing is heavy the standby unit also starts 
operation and when the demand becomes Normal, the standby unit which is in operation comes into 
standby mode.  

(3) Failure of the standby unit remains undetected therefore the standby unit is inspected at random 
intervals of time. The failure can also be detected at the time of need of standby unit to become 
operative. If the standby unit is found to be failed in the inspection then it is sent for repair 
immediately. 

(4) After each repair the unit goes for installation before starting its operation. 
(5) A single repair facility with discipline FCFS is available for repair and inspection but installation of 

unit gets priority over repair. 
(6) Failure time distribution for both operative and standby units are assumed to be negative exponential. 

Also the distributions for variations in demand from "normal to heavy" and "heavy to normal" and for 
inspection of standby unit are negative exponential while the distribution of repair and installation 
time are assumed to be general.  

(7) Repair time distribution of units failed during operation and standby position are same and 
assumed to be general.  
 

3 Notation and Symbols  
 

 N0  :  Normal unit kept as operative 
 Ns  :  Normal unit kept as warm standby 
 Fr  :  Failed unit under repair 
 Fwr  :  Failed unit waiting for repair 
 FR  :  Repair of failed unit continued from earlier state  
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 Fu  :  Unit failed during standby position with undetected failure  
 Fi  :  Repaired unit under installation before starting its operation  
 Fl  :  Installation of repaired unit continued from earlier state 
 α  :  Constant failure rate of the operative unit  
 β  :  Constant failure rate of the warm standby unit 
 θ  :  Constant rate for increasing of demand from normal to heavy  
 η  :  Constant rate for decreasing of demand from heavy to normal 
δ  :  Constant rate of inspection of standby unit 
f(.), F(.)  :  pdf and cdf of time to repair a failed unit 
g(.), G(.)  :  pdf and cdf of time to complete installation of the repaired unit 
* : Symbol for Laplace Transformation 
~ : Symbol for Laplace Stieltjes Transform 
© : Symbol for Ordinary Convolution  
$ :  Symbol for Stieltjes Convolution  

 
Using the above notation and symbols the possible states of the system are  
 
Up States 
 

S0 ≡ (N0, Ns)  S1 ≡ (N0, N0)  S2 ≡ (No, Fr)  S3 ≡ (N0, Fi)  S4 ≡ (N0, Fu) 
 
Down States  
 

S5 ≡ (Fr, Fwr)  S6 ≡ (Fwr, Fi)  S7 ≡ (Fl, Fwr)   S8 ≡ (FR, Fwr) 
   
The transitions between the various states are shown in Fig. 1. 
 

 
 

Fig. 1. State transition diagram 
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4 Transition Probabilities 
 
Let To (=0), T1,T2,.... be the epochs at which the system enters the states Si ∈ E. Let Xn denotes the state 
entered at epoch Tn+1 i.e. just after the transition of Tn. Then {Tn, Xn} constitutes a Markov-renewal process 
with state space E and  
 

 Qik(t) = Pr[Xn+1 = Sk, Tn+1 -Tn  t | Xn = Si]                                                                               
(1) 

 
 is semi Markov-Kernal over E. The stochastic matrix of the embedded Markov chain is 
 

 P = Pik= 
t
lim
→∞  

Qik(t) = Q(∞)                                         (2) 

 
By simple probabilistic consideration, the non-zero elements of Qik(t) are: 
 

 
 

 

 

 

 
 

  

  

 
 

 

 
 

 
 

 

 

 
 

 
 

 

 

 
 

 

t ( )u
01 0Q (t) e du− α+β+θ= ∫ θ

( ) t[1 e ]− α+β+θθ= −
α + β + θ

t ( )u
02 0Q (t) e du− α+β+θ= ∫ α

( ) t[1 e ]− α+β+θα= −
α + β + θ

t ( )u
04 0Q (t) e du− α+β+θ= ∫ β

( ) t[1 e ]− α+β+θβ= −
α + β + θ

t (2 )u
10 0Q (t) e du− α+η= ∫ η

(2 ) t[1 e ]
2

− α+ηη= −
α + η

t (2 )u
12 0Q (t) 2 e du− α+η= ∫ α

(2 ) t2
[1 e ]

2
− α+ηα= −

α + η
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            (3-17) 

 
Taking limit as t → ∞, the steady state transition pij can be obtained from (3-17). Thus 
 

                                (18) 

 

     02p
α=

α + β + θ  
 

     

 
 

12

2
p

2

α=
α + η

     
 

 

t u
23 0Q (t) e f (u)du−α= ∫

t u
28 0Q (t) e F(u)du−α= ∫ α

t u
30 0Q (t) e g(u)du−α= ∫

t u
37 0Q (t) e G(u)du−α= ∫ α

t ( )u
42 0Q (t) e du− α+δ= ∫ δ

( )t[1 e ]− α+δδ= −
α + δ

t ( )u
45 0Q (t) e du− α+δ= ∫ α

( )t[1 e ]− α+δα= −
α + δ

t
56 0Q (t) f (u)du= ∫

t
62 0Q (t) g(u)du= ∫

(8) t v
26 0Q (t) (1 e )dF(v)−α= ∫ −

(7) t v
32 0Q (t) (1 e )dG(v)−α= ∫ −

ik ikt
p limQ (t)

→∞
=

01p
θ=

α + β + θ

04p
β=

α + β + θ 10p
2

η=
α + η

23p f *( )= α
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28p 1 f *( )= − α       

37p 1 g*( )= − α      42p
δ=

α + δ  
 

      
 

 
(8)

26p 1 f * ( )= − α      
(7)

32p 1 g *( )= − α       (19-32) 

   
From the above probabilities the following relation can be verified as; 
 

 p01 + p02 + p04 = 1 p10 + p12 = 1 
 
 p23 + p28 = p23 + p(8)

26 = 1 
 
 p30 + p37 = p30 + p(7)

32 = 1 
 
 p42 + p45 = 1 
 
 p56 = 1 = p62              (33-38) 

 

5 Mean Sojourn Times 
 
The mean time taken by the system in a particular state Si before transiting to any other state is known as 
mean sojourn time and is defined as 
 

 µi = 0∫
∞ P[T > t] dt                 (39) 

 
where T is the time of stay in state Si by the system. 
 
To calculate mean sojourn time µi in state Si, we assume that so long as the system is in state Si, it will not 
transit to any other state. Therefore; 
 

 

 

 
 

 2

1
[1 f * ( )]µ = − α

α  
 

3

1
[1 g * ( )]µ = − α

α  
 

30p g*( )= α

45p
α=

α + δ 56 62p p 1= =

0

1µ =
α + β + θ

1

1
2

µ =
α + η
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4

1µ =
α + δ  

 

 
 

                     (40-46) 

 
5.1 Contribution to Mean Sojourn Time 
 
For the contribution to mean sojourn time in state Si ∈ E and non-regenerative state occurs, before transiting 
to Sj ∈ E i.e.,  
 

                             (47) 

 
Therefore,  
 

 
 

 
 

04 2
m

( )

β=
α + β + θ  

 

10 2
m

(2 )

η=
α + η  

 

 12 2

2
m

(2 )

α=
α + η  

 

 
t

23 0m t.e f (t)dt∞ −α= ∫
 

 
t

28 0m t. .e F(t)dt∞ −α= ∫ α
 

 
t

30 0m t.e g(t)dt∞ −α= ∫
 

 
t

37 0m t. .e G(t)dt∞ −α= ∫ α  

5 0 0 1F(t)dt t.f (t)dt m∞ ∞µ = ∫ = ∫ =

6 0 0 2 7G(t)dt t.g(t)dt m∞ ∞µ = ∫ = ∫ = = µ

ij ij ijm t.q (t)dt q '* (0)= − = −∫

01 2
m

( )
θ=

α + β + θ

02 2
m

( )
α=

α + β + θ
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42 2
m

( )

δ=
α + δ  

 

 
 

56 0m t.f (t)dt∞= ∫
 

 

62 0m t.g(t)dt∞= ∫
 

 

 
 

(7) t
32 0m t.(1 e )g(t)dt∞ −α= ∫ −                        (48-62) 

 
Hence using (48 – 62) the following relations can be verified as follows  
 

m01 + m02 + m04 = µ0    m10 + m12 = µ1 

 
m23 + m28 = µ2     m23 + m(8)

26 = m1 

 
m30 + m37 = µ3     m30 + m(7)

32 = m2 

 
m42 + m45 = µ4  

     

 
 

                              (63-71) 

 

6 Mean Time to System Failure  
 
To obtain the distribution function πi(t) of the time to system failure with starting state S0. 
 

π0(t) = Q01 (t) $π1(t) + Q02(t) $π2(t) + Q04(t) $π4(t) 
 
π1(t) = Q10(t) $π0(t) + Q12(t) $ π2(t)  
 
π2(t) = Q23(t)$π3(t) + Q28(t) 
 
π3(t) = Q30(t)$π0(t) + Q37(t) 
 
π4(t) = Q42(t)$π2(t) + Q45(t)           (72-76) 

 
Taking Laplace Stieltjes transform of relations (72-76) we have  
 

 

45 2
m

( )
α=

α + δ

(8) t
26 0m t.(1 e )f (t)dt∞ −α= ∫ −

56 0 0 5m F(t)dt t.f (t)dt∞ ∞= ∫ = ∫ = µ

62 0 0 6m G(t)dt t.g(t)dt∞ ∞= ∫ = ∫ = µ

0 01 1 02 2 04 4(s) Q (s). (s) Q (s). (s) Q (s). (s)π = π + π + π% % %% % % %



 
 
 

Joshi and Sharma; BJMCS, 11(4): 1-16, 2015; Article no.BJMCS.20436 
 
 
 

9 
 
 

 
 

 

 
 

 

 
 

 

 4 42 2 45(s) Q (s). (s) Q (s)π = π +% %% %           (80-84) 

 

and solving it for 0(s)π% by omitting the argument 's' for brevity,  

 

0(s)π% = N1(s) / D1(s)                    (85) 

 
where  
 

 
 

                 
              (86) 

 
and  
 

             (87) 

 
Then  
 

 
 

 
= p01p12p23p37 + p04p42p23 + p01p12p28 + p04p42p28 + p02p23p37 + p30p02p28 + p04p45            (88) 

 
and  

  
 

 
 = 1 – p01p10 – p02p23p30 – p01p12p23p30              (89) 

 
Here by further simplifications it can be seen that  
 

N1(0) = D1(0),  
 
Therefore, 
 

= N1(0) / D1(0) = 1 

 

This implies that 0(t)π% is proper distribution function. 

 

1 10 0 12 2(s) Q (s). (s) Q (s). (s)π = π + π% %% % %

2 23 3 28(s) Q (s). (s) Q (s)π = π +% %% %

3 30 0 37(s) Q (s). (s) Q (s)π = π +% %% %

1 01 12 23 37 04 42 23 01 12 28 04 42 28N (s) Q Q Q Q Q Q Q Q Q Q Q Q Q= + + +% % % % % % % % % % % % %

02 23 37 30 02 28 04 45Q Q Q Q Q Q Q Q+ + +% % % % % % % %

1 01 10 02 23 30 01 12 23 30D (s) 1 Q Q Q Q Q Q Q Q Q= − − −% % % % % % % % %

1 1s 0
N (0) lim N (s)

→
=

1 1s 0
D (0) limD (s)

→
=

0(0)π%
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Now, to obtain the relevant coefficient of mij and m(k)
ij in D'1(0) – N'1(0), we proceed as follows Coefficient 

of mij 's in D'1(0) - N'1(0) 
 

Coefficient of mij 's in D'1(0) – N'1(0) 
  

mij  Coefficient 
m01  

m02  

m04  

m10 
m12  

m23  

m28 
m30 
m37  

m42  

m45 

1  
1  
1  
p01  

p01  

p01p12 + p02p30 + p04p42  

p01p12 + p02p30 + p04p42 
p23(p01p12 + p02)  
p23(p01p12 + p02)  
p28p04  

p28p04 
 
Therefore, 
 

D'1(0) - N'1(0) = (m01 + m02 + m04) + (m10 + m12)p01 

 
   + (m23 + m28)(p01p12 + p02p30 + p04p42)  
 
   + (m30 + m37)p23(p01p12 + p02)  
 
   + (m42 + m45)p28p04  

 

 = µ0 + µ1p01 + m1(p01p12 + p30p02 + p04p42) 
 
   + m2( p01p12p23 + p02p23) + µ4p28p04               (90)  

 
Therefore, mean time to system failure when the initial state is So, is 
 

E(T) =                             (91) 

 
where N1 and D1 are same as in (90) and (89) respectively. 
 

7 Availability Analysis 
 
System availability is defined as 
 
A i(t) = Pr[Starting from state Si the system is available at epoch t without passing through any regenerative 
state] and Mi(t) = Pr[Starting from up state Si the system remains up till epoch t without passing through any 
regenerative up state] 
 
Obtaining Ai(t) by using elementary probability argument; 
 

A0(t) = M0(t) + q01(t)©A1(t) + q02(t)©A2(t) + q04(t) ©A 4(t) 
 
A1(t) = M1(t) + q10(t) © A0(t) + q12(t) © A2(t) 

1 1
0 s 0 1 1

1

d D ' (0) N ' (0)
(s) | N / D

dx D (0)=
−− π = =
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A2(t) = M2(t) + q23(t) © A3(t) + q(8)
26(t) © A6(t) 

 
A3(t) = M3(t) + q30(t) © A0(t) + q(7)

32(t) © A2(t) 
 
A4(t) = M4(t) + q42(t) © A2(t) + q45(t) © A5(t) 
 
A5(t) = q56(t) © A6(t) 
 
A6(t) = q62(t) © A2(t)             (92-98) 

 
Where 
 

M0(t) = 
( ) te− α+β+θ

 M1(t) =  
 

M2(t) =  M3(t) = 
 

 

M4(t) = 
( )te− δ+α

           (99-103) 
   
Taking Laplace transform of above equation (92-98) we have 
 

A* 0(s) = M*0(s) + q*01(s).A*1(s) + q*02(s).A*2(s) + q*04(s).A*4(s) A*1(s)  
 

= M* 1(s) + q*10(s).A*0(s) + q*12(s).A*2(s) A*2(s) = M*2(s) 
  
+ q*23(s).A*3(s) + q*(8)

26(s).A*6(s) A*3(s) = M*3(s) + q*30(s).A*0(s)  
 
+ q*(7)

32(s).A*2(s) A*4(s) = M*4(s) + q*42(s).A*2(s) + q*45(s).A*5(s)  
 

A* 5(s) = q*56(s).A*6(s) A*6(s) = q*62(s).A*2(s)                   (104-110) 
 
Now, solving for point wise availability A*0(s), by omitting the arguments 's' for brevity, one gets 
 

                              (111)  

Where 
 

N2(s) = [(M*0 + q*01M1 + q*04M* 4).(1 - q*(7)
32q*23 - q*(8)

26q*62)  
 
            + (M*2 + q*23M3)(q*01q*12 + q*02 + q*04q*42 + q*04q*45 q*56q*62)]          (112) 

 
and   

 
D2(s) = [(1 - q*(7)

32q*23 - q*(8)
26q*62)(1 - q*01q*10) 

 
            - q*23q*30(q*01q*12 + q*02 + q*04q*42 + q*04q*45q*56q*62)]          (113) 

 
Then 
 

 D2(0) = [(1 - p(7)
32p23 - p

(8)
26)(1 - p01p10)  

 
 - p23p30(p01p12 + p02 + p04p42 + p04p45)]                  (114) 

(2 )te− α+η

te F(t)−α te G(t)−α

2
0

2

N (s)
A * (s)

D (s)
=
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Now, we collect the relevant coefficients of mij  = -q*'ij(0) in D'2(0) as follows 
 

Coefficient of mij 's in D'2(0) 
 
mij 's Coefficients 
m01 

m02  

m04 
m10 
m12 
m23 
m(8)

26  

m30 
m(7)

32  

m42  

m45 
m56 
m62 

p23p30  

p23p30  

p23p30  

p01p23p30  

p01p23p30  

1 - p01p10  

1 - p01p10 
p23(1 - p01p10)  
p23(1 - p01p10)  
p23p30p04  

p23p30p04  

p23p30p04p45  

p23p30p04p45 
 
Also, we can have that 
 

 M* 0(0) = µ0    M*1(0) = µ1 

 

 M* 2(0) = µ2    M*3(0) = µ3 

 
 M* 4(0) = µ4          (115-119) 

 
Thus 
 

 D2 = D2'(0) = [p23p30(µ0 + µ1p01 + µ4p04) 
 
         + (1 - p01p10)(m1 + m2p23) + (µ6 + µ5) p23p30p04p45)]           (120) 

 
And 
 

N2 = N2(0) = [p23p30(µ0 + µ1p01 + µ4p04) + (1 – p01p10)(µ2 + p23µ3)]           (121) 
 
 Therefore, the steady state functioning availability of the system is 
 

A0(∞) = 
t
lim
→∞

A0(t) = s. A0*(s) = N2(0)/D'2(0) = N2/D2            (122) 

 
where N2 and D2 are given in (121) and (120) respectively.  
 

8 Busy Period Ananlysis 
 
Let Bi(t) be the probability that the system is under repair at time t, Thus the following recursive relations 
among Bi(t)'s can be obtained as ; 
 

B0(t) = q01(t) © B1(t) + q02(t) © B2(t) + q04(t) © B4(t) 
 
B1(t) = q10(t) © B0(t) + q12(t) © B2(t) 
 

s
lim
→∞
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B2(t) = W2(t) + q23(t) © B3(t) + q(8)
26(t) © B6(t) 

 
B3(t) = W3(t) + q30(t) © B0(t) + q(7)

32(t) © B2(t) 
 
B4(t) = q42(t) © B2(t) + q45(t) © B5(t) 
 
B5(t) = W5(t) + q56(t) © B6(t) 
 
B6(t) = W6(t) +q62(t) © B2(t)                     (123-129) 

 
where 
 

W2(t) =  W3(t) = 
 

 

W5(t) =  W6(t) =         (130-133) 

 
Taking Laplace transform of the equations (123-129), we get 
  

B*0(s) = q*01(s).B*1(s) + q*02(s).B*2(s) + q*04(s).B*4(s) 
 
B*1(s) = q*10(s).B*0(s) + q*12(s).B*12(s) 
 
B*2(s) = W*2(s) + q*23(s) . B*3(s) + q*(8)

26(s).B*6(s) 
 
B*3(s) = W*3(s) + q*30(s) . B*0(s) + q*(7)

32(s).B*2(s) 
 
B*4(s) = q*42(s).B*2(s) + q*45(s).B*5(s) 
 
B*5(s) = W*5(s) + q*56(s).B*6(s) 
 
B*6(s) = W*6(s) + q*62(s).B*2(s)                    (134-140) 

 
Solving the above equations (134-140) for B*0(s), by omitting the argument 's' for brevity we get; 
 

B*0(s) = N3(s) / D3(s)                (141) 
 

Where  
 

N3(s) = [(W*2 + q*(8)
26W* 6 + q*23W* 3)(q*01q*12 + q*02 + q*04q*45q*56q*62  

 
           +q*04q*42) + q*04q*45(W*5 + q*56W*6)(1 – q*(8)

26q*62 – q*23q*(7)
32)]         (142) 

 
and D3(s) is same as D2(s) in (113). 
 
In the steady state, the fraction of time for which the repair facility is busy in repair is given by  
 

B0 = 
t
lim
→∞

B0(t) = 
s
lim
→∞

B*(s) = N3(0) / D'3(0) = N3/D3                          (143) 

 
where in terms of  
 

W* 2(0) = W*5(0) = m1 

W* 3(0) = W*6(0) = m2                    (144 – 145) 
 

F(t) G(t)

F(t) G(t)
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N3(0) = N3 = [(m1 + m2)(1 - p01p10 - p23p30p04p45)]             (146) 
 

and D3 is same as D2 in (120). 
 

9 Expected Number of Visits by the Repair Facility 
 
Let we define, Vi(t) as the expected number of visits by the repair facility in (0,t] given that the system 
initially started from regenerative state Si at t = 0. Then following recurrence relations among Vi(t)'s can be 
obtained as;  
 

V0(t) = Q01(t)$V1(t) + Q02(t)$[1 + V2(t)] + Q04(t)$V4(t)  
 
V1(t) = Q10(t)$V0(t) + Q12(t)$[1 + V2(t)]  
 
V2(t) = Q23(t)$V3(t) + Q(8)

26(t)$V6(t)  
 
V3(t) = Q30(t)$V0(t) + Q(7)

32(t)$V2(t)  
 
V4(t) = Q42(t)$V2(t) + Q45(t)$[1+V5(t)] 
 
V5(t) = Q56(t)$V6(t) 
 
V6(t) = Q62(t)$V2(t)         (147-153) 

 
Taking Laplace-Stieltjes transform of the above equations (147-153), we get 
 

0 01 1 02 2 04 4V (s) Q (s)V (s)] Q (s).[1 V (s)] Q (s)V (s)= + + +% % %% % % %
 

 

1 10 0 12 2V (s) Q (s).V (s) Q (s).[1 V (s)]= + +% %% % %
 

 
(8)

2 23 3 26 6V (s) Q (s).V (s) Q (s).V (s)= +% %% % %
 

 
(7)

3 30 0 32 2V (s) Q (s).V (s) Q (s).V (s)= +% %% % %
 

 

4 42 2 45 5V (s) Q (s).V (s) Q (s).[1 V (s)]= + +% %% % %
 

 

5 56 6V (s) Q (s).V (s)= %% %
 

 

6 62 2V (s) Q (s).V (s)= %% %

                         
(154-160) 

 

And the solution of 0V (s)%  may be expressed as by omitting the argument's' for brevity is 

 

0V (s)%
 
= N4(s)/D4(s)                         (161) 

where 

N4(s) = 
(8) (7)

02 01 12 01 12 26 62 01 12 23 32(Q Q Q Q Q Q Q Q Q Q Q+ − −% % % % % % % % % % %  

            
(8) (7)

02 26 62 02 23 32Q Q Q Q Q Q )]+ −% % % % % %                  (162) 
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and D4(s) can be obtained as D2(s) in (113) by putting Qij in place of q*ij. 
 
Now, 
 

N4 = N4(0) = p23p30(p01p12 + p02)                (163) 
 
Therefore, In steady state the number of visit per unit of time when the system starts after entrance into state 
S0 is; 
 

V0 = 
t
lim
→∞

[V0(t)/t] = 
s
lim
→∞

s 0V (s)% = N4/D4             (164) 

 
where N4 and D4(=D2) are as in (163) and (120) respectively. 
 

10 Conclusion  
 
The objective of this paper was to formulate a methodology for analysis two identical unit warm stand by 
system subject to varying demand of production of items increase arbitrarily for some random amount of 
time and common cause failures and general repair rate. The problem of evaluation of various reliability 
performance measures as Transition and steady state transition probabilities, Mean Sojourn times in various 
states, Mean time to system failure (MTSF), Point wise and Steady state availability, Expected Busy period 
of the repairman and Expected number of visits by the repairman according  to the system using regenerative 
point technique with Markov renewal process which is convenient for computation. The result obtained in 
this paper can be applied to similar other model.   
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