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Abstract 
This work illustrates the application of the 1st-CASAM to a paradigm heat 
transport model which admits exact closed-form solutions. The closed-form 
expressions obtained in this work for the sensitivities of the temperature dis-
tributions within the model to the model’s parameters, internal interfaces and 
external boundaries can be used to benchmark commercial and production 
software packages for simulating heat transport. The 1st-CASAM highlights 
the novel finding that response sensitivities to the imprecisely known domain 
boundaries and interfaces can arise both from the definition of the system’s 
response as well as from the equations, interfaces and boundary conditions 
that characterize the model and its imprecisely known domain. By enabling, 
in premiere, the exact computations of sensitivities to interface and boundary 
parameters and conditions, the 1st-CASAM enables the quantification of the 
effects of manufacturing tolerances on the responses of physical and engi-
neering systems. 
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1. Introduction 

An accompanying work [1] has presented the mathematical framework of the 
first-order comprehensive adjoint sensitivity analysis methodology (1st-CASAM) 
for computing efficiently, exactly and exhaustively, the first-order response sen-
sitivities to imprecisely known parameters that describe the system, the impre-
cisely known physical interfaces between systems, and the systems’ imprecisely 
known external boundaries for coupled nonlinear physical systems. This work 
presents an illustrative application of the 1st-CASAM to a benchmark model [2] 
[3] [4] that models coupled heat conduction and convection in a physical system 
comprising an electrically heated rod surrounded by a coolant which simulates 
the geometry of an advanced (“Generation-IV”) nuclear reactor [5]. This 
benchmark model [2] [3] [4] admits exact closed-form solutions for the sensitiv-
ities of the temperature distribution in the coupled rod/coolant system which 
can be used to benchmark thermal-hydraulics production codes. Notably, this 
model [2] [3] [4] was used to verify the numerical results produced by the 
FLUENT Adjoint Solver [6], showing, in particular, that the current version of 
the FLUENT Adjoint Solver cannot compute sensitivities for the temperature 
distribution within the solid rod. 

This work is structured as follows. Section 2 presents the mathematical mod-
eling of the heat conduction process in the electrically heated rod coupled to the 
convective heat transport in the coolant surrounding the heated rod. This ma-
thematical model admits exact closed-form solutions for the temperature distribu-
tions, which can be used to benchmark thermal-hydraulics production codes. Sec-
tion 3 presents the application of the 1st-CASAM to the heat conduction/convection 
model to obtain the exact expressions of the sensitivities of the temperature dis-
tribution in the coupled rod/coolant system to the imprecisely known model, 
internal interface and external boundary parameters. The exact closed-form ex-
pressions obtained in this work for the respective sensitivities can also be used to 
benchmark thermal-hydraulics production codes. Section 4 offers concluding 
remarks. Ongoing research will generalize the methodology presented in this 
work, aiming at computing exactly and efficiently higher-order response sensi-
tivities for coupled systems involving imprecisely known interfaces, parameters, 
and boundaries. As is well known [7], the availability of response sensitivities to 
imprecisely known parameters, interfaces and boundaries is essential for a va-
riety of subsequent uses, including uncertainty quantification, optimization, data 
assimilation, model calibration and validation, and reduction of uncertainties in 
predicted model results. 

2. Coupled Heat Conduction and Convection Benchmark:  
Mathematical Modeling 

The benchmark model [2] [3] [4] presented in this Section simulates the 
steady-state heat conduction in an electrically heated rod coupled through convec-
tion heat transfer to coolant surrounding the heated rod. This benchmark [2] [3] 
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[4] system simulates a fuel rod in an operating nuclear reactor and admits exact 
closed-form solutions for the sensitivities of the temperature distribution in the 
coupled rod/coolant system which can be used to benchmark thermal-hydraulics 
production codes. In particular, this benchmark [2] [3] [4] was used to verify the 
numerical results produced by the FLUENT Adjoint Solver [6] highlighting some 
strengths and important weaknesses of the “FLUENT Adjoint Solver” software. 

The geometrical characteristics of the electrically heated rod are: radius a and 
length (height)  . The rod is heated by a heat source of the form ( )cosq zπ  , 
where 3W mq − ⋅   denotes a constant volumetric source and z denotes the 
coordinate along the rod’s axial (customarily, the vertical) direction. This heat 
source simulates the axial heat distribution in a nuclear reactor. The heated rod 
transfers heat by convection to the surrounding coolant that flows along the 
rod’s vertical direction. The rod’s conductivity, 1 1W m Kk − − ⋅ ⋅  , is considered 
to be a temperature-independent constant. The rod’s surface is cooled by forced 
convection to a surrounding liquid flowing along the rod’s length, from the rod’s 
lower end, taken to be located at 2z = − , towards the rod’s upper end, located 
at 2z =  . The heat transfer coefficient, 2 1W m Kh − − ⋅ ⋅  , from the rod’s sur-
face to the coolant is considered to be constant. For this benchmark, the rod’s 
length is typically two orders of magnitude larger than its diameter, so the heat 
conduction process in the rod’s axial direction can be neglected by comparison 
to the heat conduction in the rod’s radial direction. Under these conditions, the 
steady-state temperature distributions, ( ),T r z  and ( )flT z , within the heated 
rod and coolant (fluid), respectively, are obtained from the following energy 
conservation balances: 

( ),
cos , 0 , ,

2 2
T r zk zr q r a z

r r r
∂ ∂

= − ≤ < − ≤ ≤ ∂ 

π
∂

 



         (1) 

( ),
0, at 0,

T r z
r

r
∂

= =
∂

                      (2) 

( ) ( ) ( )
,

, , at ,fl

T r z
k h T r z T z r a

r
∂

 − = − = ∂
             (3) 

( ) 2d
cos , ,

d 2 2
fl

p

T z a q z z
z Wc

π π
= − ≤ ≤

 



                (4) 

( )   , at 2,fl inletT z T z= = −                     (5) 

where 1kg sW − ⋅   denotes the mass flow rate, [ ]KinletT  denotes the inlet 
temperature, and 1 1J kg Kpc − − ⋅ ⋅   denotes the coolant’s heat capacity. 

For this paradigm benchmark problem, Equations (1)-(5) can be solved ex-
actly to obtain the following closed form expressions: 

( ) ( )
2 2

, cos , 0 , ,
4 2 2 2fl

a r a zT r z q T z r a z
k h

 −
= + + ≤ < −

 

π
≤ ≤

 



    (6) 

( )
2

sin 1 , .
2 2fl inlet

p

a q zT z T z
Wc

 = + + − ≤ ≤ 


π



  



            (7) 
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The imprecisely known parameters underlying the paradigm heat transfer 
benchmark modeled by Equations (1)-(5) are: , , , , , , ,p inletq k h W c T a  . A list of 
these parameters is provided in the Nomenclature Section at the end of this 
work. The known nominal values of these parameters will be denoted by using 
the superscript “zero,” i.e., 0 0 0 0 0 0 0 0, , , , , , ,p inletq k h W c T a  . The nominal values of 
the temperature distributions in the rod and coolant, denoted as ( )0 ,T r z  and 

( )0
flT z , respectively, have the following expressions: 

( )
( )

( )
20 2 0 0 0

0 0 0
0 0 0, cos , 0 , ,

2 24 2 fl

a r a zT r z q T z r a z
k h

 − = + + ≤ < − ≤ ≤
 
 

π



 



 (8) 

( )
( )20 0 0 0 0

0 0
0 0 0sin 1 , .

2 2fl inlet
p

a q zT z T z
W c

 = + + − ≤ ≤ 
 

π

 



         (9) 

3. Application of the 1st-CASAM to the Coupled Heat  
Conduction and Convection Benchmark Model 

The arbitrary variations in the imprecisely known model parameters, around the 
respective nominal values, will be denoted as follows: 0q q qδ − , 0k k kδ − , 

0h h hδ − , 0W W Wδ − , 0
p p pc c cδ − , 0

inlet inlet inletT T Tδ − , 0a a aδ − , 
0δ −    . The variations in the rod and coolant temperatures, respectively, 

caused by the imprecisely known parameters will be denoted as follows: 
( ) ( ) ( )0, , ,T r z T r z T r zδ −  and ( ) ( ) ( )0

fl fl flT z T z T zδ − , respectively. 

3.1. First-Order Sensitivities of the Coolant’s Temperature 

The sensitivities to model and boundary parameters of several typical responses, 
including the value of the coolant temperature at a point, the average coolant 
temperature, and the coolant temperature itself, will be determined in this Sec-
tion by applying the 1st-CASAM presented in Reference 1. The 1st-LFSS corres-
ponding to Equations (4) and (5) is obtained by determining the G-differentials 
of these equations to obtain:  

( ) ( )

( ) ( )
( )( )

0

0

20 0

00 0

0

dd
d d

d cos ,
d

fl fl

p p

T z T z

z

a a q q z
W W c c

ε

ε

εδ

ε

εδ εδ

ε εδεδ εδ

=

=

  +  
 
  
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π
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 
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ε
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ε

=

=

     + + − + −     
       

 = + 
 

   

           (11) 

Carrying out in Equations (10) and (11) the differentiations with respect to ε  
and setting 0ε =  in the resulting expressions yields the following set of equa-
tions: 

https://doi.org/10.4236/ajcm.2020.102016


D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2020.102016 294 American Journal of Computational Mathematics 
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fl
fl inlet inlet

T z
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δ δ δδ
= + =

= −





              (13) 

since ( ){ }0

2
d d 0flT z z =



, as evidenced by evaluating Equation (4) at 2z = − . 
The 1st-LFSS, comprising Equations (12) and (13), evidently depends on the ar-
bitrary variations which affect the imprecisely known model parameters. The 
1st-LFSS can be solved in closed form and its solution can be used for the subse-
quent verification of the expressions to be obtained for the 1st-order response 
sensitivities using the 1st-level adjoint functions. For subsequent verification 
purposes, the solution of Equations (12) and (13) is provided below: 

( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )

( )
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2 20 0 00 0
0

0 0 0 0 20 0
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T z T

W c W c W c
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W c
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W c

δ δδ

δ

δδ

δ


= + + −




 − +   

  + − + +    

π

π π π


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  

    (14) 

It is evident that the expression obtained in Equation (14) is the total differen-
tial with respect to the model and boundary parameters of the expression of 

( )flT z  given in Equation (7). 

3.1.1. First-Order Sensitivities of the Coolant’s Temperature at a Point in  
Phase-Space 

The coolant temperature, ( )fl pT z , at some axial point pz z= , 2 2pz− < <  , 
can be represented in the form 

( ) ( ) ( )
2

2

dfl p fl pT z T z z z zδ
−

= −∫




.                 (15) 

The imprecisely known model and boundary parameters that characterize the 
heat transport benchmark modeled by Equations (1) through (5) and including 
the imprecisely known location pz , the response defined in Equation (15) are: 

, , , , , , , ,p inlet pq k h W c T a z . The total sensitivity of the response defined in Equa-
tion (15) is given by its total G-differential, which is 
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( ) ( ) ( ) ( )
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dir ind

fl p fl p

T z T z T z z z z z

T z T z

εδ

εδ
ε

δ εδ δ εδ
ε

δ δ

+

− +
=

 
  = + − −  
  

= +

∫
 
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where the direct-effect term ( ){ }dir

fl pT zδ  is defined as follows: 

( ){ } ( ) ( ) ( ) ( ) ( )0

0

02
0 0

2

d
p

dir fl
fl p p fl p p

z z

T z
T z z T z z z z z

z
δ δ δ δ

− =

 ∂ ′= − − =  
∂  

∫




,  (17) 

while the indirect-effect term ( ){ }ind

fl pT zδ  is defined as follows: 

( ){ } ( ) ( )
0

0

2

2

d
ind

fl p fl pT z T z z z zδ δ δ
−

−∫




 ,               (18) 

The direct-effect term ( ){ }dir

fl pT zδ  can be evaluated immediately. On the 
other hand, the indirect-effect term ( ){ }ind

fl pT zδ  depends on the unknown 
variation ( )flT zδ . In practice, the 1st-LFSS comprising Equations (12) and (13) 
would need to be solved numerically, repeatedly, for every possible parameter 
variation. As shown in the companion article1, application of the 1st-CASAM 
circumvents the need for solving the 1st-LFSS repeatedly by constructing the 
1st-LASS corresponding to the 1st-LFSS. Construction of the 1st-LASS requires 
the existence of an inner product in the phase-space domain of definition of the 
1st-LFSS. For the system defined by Equations (4), (5) and (15), the domain of 
definition is 2 , 2pz z− ≤ ≤  . The inner-product of two square-integrable 
functions ( )1u z  and ( )2u z  defined on 2 , 2pz z− ≤ ≤   has the following 
expression: 

( ) ( ) ( ) ( )
0

0

2

1 2 1 2
2

, d
u

u z u z u z u z z
−
∫




 .               (19) 

Using the definition provided in Equation (19), construct the inner product of 
Equation (12) with a square-integrable function ( )fl zΨ  to obtain the following 
relation: 

( )
( )

( ) ( )
0 0

0 0

2 2

2 2

d
d d

d
fl

fl fl fl

T z
z z z Q z z

z

δ

− −

  Ψ = Ψ∫ ∫
 

 

.         (20) 

Integrating by parts the term on the left-side of Equation (20) yields the fol-
lowing relation: 
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2 0 0
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d
d

d 2 2
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δ δ

δ

−

−

  Ψ

Ψ     
 = − +Ψ             
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∫

∫


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 

        (21) 
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Identify the first term on the right-side of Equation (21) with the indi-
rect-effect term defined in Equation (18) to obtain the following relations: 

( ) ( )
0 0

0 , ,
2 2

fl
p

z
z z z

z
δ

∂Ψ
− = − − ≤ ≤

∂
               (22) 

( ){ } ( ) ( )
0

0

2 0 0

2

0 0

d
2 2

.
2 2
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fl p fl fl fl fl

fl fl

T z z Q z z T

T

δ δ

δ

−

   
= Ψ −Ψ    

   

   
+ Ψ − −   

   

∫




 

 

      (23) 

The boundary condition given in Equation (13) is used to replace 

( )0 2flT zδ = −  in the last term on the right side of Equation (23). The re-
maining term in Equation (23), which contains the unknown value ( )0 2flTδ  , 
is set to zero by imposing the following boundary condition for the function 

( )fl zΨ : 

( ) 0, at . 0 2fl z zΨ = =                     (24) 

It follows from in Equations (24) and (13) that Equation (23)becomes 

( ){ } ( ) ( )
0

0

2 0

2

d
2

ind

fl p fl fl fl inletT z z Q z z Tδ δ
−

 
= Ψ +Ψ − 

 
∫






,      (25) 

where the adjoint function ( )fl zΨ  is the solution of the 1st-LASS comprising 
Equations (22) and (24). As expected from the general methodology underlying 
the 1st-CASAM, the 1st-LASS, comprising Equations (22) and (24), is indepen-
dent of any parameter variation. Inserting the definition of ( )flQ z  provided in 
Equation (12) into Equation (25) and identifying the expressions that multiply 
the respective arbitrary parameter variations yields the following expressions for 
the sensitivities of the response ( )fl pT z  in terms of the adjoint function 

( )fl zΨ : 

( )
( )

0

0

20 0

0 0 0
2

2 cos dfl p
fl

p

T z a q zz z
a W c −

∂
= Ψ

∂
π

π ∫






,             (26) 
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0

0

20 2

0 0 0
2
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p
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π
π

∂
= Ψ
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





,             (27) 
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0

0
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2 00 0
2
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p

a qT z zz z
W W c −
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∂
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,           (28) 

( ) ( )
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0

0
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2
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p p

a qT z zz z
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∂
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∂
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





,           (29) 
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0

0

20 0 2
2

2 00 0 0
2
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p

a qT z zz z z
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π
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



 



,         (30) 

It also follows from Equation (25) that 
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( )0 0

2
fl p

fl
inlet

T z

T

∂  
= Ψ − ∂  

 .                     (31) 

Solving the 1st-LASS comprising Equations (22) and (24), which is notably in-
dependent of any parameter variation, yields the following expression for the 
adjoint function ( )fl zΨ : 

( ) ( ) ( )
0 0

0 0 01 , , .
2 2

 fl p p pz H z z H z z z z Ψ = − − = − − ≤ ≤ 
         (32) 

Replacing the expression obtained in Equation (32) in Equations (26)-(31) 
and carrying out the respective integrations over the spatial variable z yields the 
following expressions (where the superscript “zero,” which indicates “nominal 
values,” has been omitted for notational simplicity) for the first-order sensitivi-
ties of ( )fl pT z  with respect to the model parameters:  

( ) 2 sin 1fl p p
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T z zaq
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 
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∂
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= + ∂  





,                  (34) 

( ) 2

2 sin 1fl p p

p

T z zqa
W W c

∂  
= − + ∂  

π




,                 (35) 

( ) 2

2 sin 1fl p p

p p

T z zqa
c Wc

∂  
= − + 

 

π

∂




,                 (36) 

( ) 2

cos sin 1fl p

p

T z a q z z z
Wc

∂   = − + +  ∂  

π π π

   

,            (37) 

( )
1fl p

inlet

T z

T

∂
=

∂
.                         (38) 

It becomes apparent by comparing the expressions obtained in Equations 
(33)-(38) with the expression provided in Equation (14) that using either the 
1st-LASS of the 1st-LFSS yields identical expressions for the respective response 
sensitivities with respect to the model and boundary parameters. Furthermore, 
the direct-effect term defined in Equation (17) provides the additional sensitivity 
of the response with respect to its imprecisely known location, which is com-
puted directly from Equation (7), namely: 

( ) 2

cos
p

fl p

pz z

T z za q
z Wc

=

∂   = 
∂ 

π



π


.                  (39) 

It is evident from the above illustrative example that the 1st-CASAM is the 
most efficient way to compute exactly the 1st-order response sensitivities to 
model and boundary parameters, since it requires a single large-scale computa-
tion to solve the 1st-LASS, namely Equations (22) and (24) for determining the 
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1st-level adjoint function needed in the subsequent quadrature formulas to 
compute all of the response sensitivities using Equations (26)-(31). 

3.1.2. First-Order Sensitivities of the Average Coolant Temperature  
The average coolant temperature, denoted as ave

flT , is given by the expression 

( )
2 2

2

1 dave
fl fl inlet

p

a qT T z z T
Wc−

 
= = +  

 
∫








.               (40) 

The total sensitivity of ave
flT  is given by its total G-differential, which is ob-

tained, by definition, by evaluating the following expression: 

( ) ( )
( )

( )

{ } { }

0

0

2
0

0
2

0

d 1 d
d

,

ave
fl fl fl

dir indave ave
fl fl

T T z T z z

T T

εδ

εδ
ε

δ εδ
ε εδ

δ δ

+

− +
=

  
   = +   +    

= +

∫
 

 

         (41) 

where the direct-effect term is defined as follows: 

{ }
( )

( )
0

0

2 0 0
0 0 0

2 00
2

d 0
2 22

dirave
fl fl fl flT T z z T Tδ δδ

−

    
= − + − − =    

     
∫




   





,   (42) 

while the indirect-effect term is defined as follows: 

{ } ( )
0

0

2

0
2

1 d
indave

fl flT T z zδ δ
−
∫








,                 (43) 

The indirect-effect term { }indave
flTδ  defined in Equation (43) will be ex-

pressed in terms of a square-integrable adjoint function, denoted as ( )ave
fl zΨ , 

by following the same procedure as used in Section 3.1.1 to obtain the following 
relation [which corresponds to Equation (25)]: 

{ } ( ) ( )
0

0

2 0

2

d
2

indave ave ave
fl fl fl fl inletT z Q z z Tδδ

−

 
= Ψ +Ψ − 

 
∫






,        (44) 

where the adjoint function ( )ave
fl zΨ  is the solution of the following 1st-LASS 

( ) 0 0

0

1 , ,
2 2

ave
fl z

z
z

∂Ψ
− = − ≤ ≤

∂
 



                 (45) 

( ) 0, at0 2.ave
fl z zΨ = =                       (46) 

Comparing Equations (44) to Equation (25) indicates that the sensitivities 
stemming from { }indave

flTδ  have the same formal expressions as those given in 
Equations (26)-(31) but with the adjoint function ( )ave

fl zΨ  replacing the ad-
joint ( )fl zΨ , namely: 

( )
0

0

20 0

0 0 0
2

2 cos d
ave
fl ave

fl
p

T a q zz z
a W c −

π
π

∂
= Ψ

∂ ∫






,              (47) 

( )
( )

0

0

20 2

0 0 0
2

cos d
ave
fl ave

fl
p

aT zz z
q W c −

∂

∂
π=

π
Ψ∫







,              (48) 
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( )
( )

( )
0

0

20 0 2

2 00 0
2

cos d
ave
fl ave

fl

p

a qT zz z
W W c −

∂
= − Ψ

∂
π

π ∫






,            (49) 

( )
( )

( )
0

0

20 0 2

2 00 0
2

cos d
ave
fl ave

fl
p p

a qT zz z
c W c −

∂
= − Ψ

∂
π

π ∫






,            (50) 

( )
( )

( )
0

0

20 0 2
2

2 00 0 0
2

sin d
ave
fl ave

fl

p

a qT zz z z
W c −

∂  = π


π
Ψ  ∂ ∫





 



,          (51) 

2

ave
fl ave

fl
inlet

T
T
∂  = Ψ − ∂  

 .                    (52) 

Solving the 1st-LASS comprising Equations (45) and (46) yields the following 
expression for the adjoint function ( )ave

fl zΨ : 

( ) 0  1 ,
2

ave
fl

zz −Ψ = +


                    (53) 

Replacing the expression obtained in Equation (53) in Equations (47)-(52) 
and carrying out the respective integrations over the spatial variable z yields the 
following expressions (where the superscript “zero”, which indicates “nominal 
values”, has been omitted for notational simplicity) for the first-order sensitivi-
ties of ( )fl pT z  with respect to the model parameters: 

2ave
fl

p

T aq
a Wc

∂
=

∂


,                      (54) 

2ave
fl

p

T a
q Wc

∂
=

∂


,                      (55) 

2

2

ave
fl

p

T qa
W W c

∂
= −

∂


,                     (56) 

2

2

ave
fl

p p

T qa
c Wc

∂
= −

∂


,                     (57) 

2ave
fl

p

T a q
Wc

∂
=

∂
,                      (58) 

1
ave
fl

inlet

T
T
∂

=
∂

.                       (59) 

For validation purposes, it is noted that the expressions obtained in Equations 
(54)-(59) are identical to the corresponding expressions that would be obtained 
by determining the partial sensitivities (1st-order derivatives) of the closed-form 
expression provided in Equation (40). In practice, the closed-form expression of 
the response is not available, so that such validation/comparisons are performed 
approximately by computing the sensitivities of the response numerically, using 
re-computations with perturbed parameter values in conjunction with finite dif-
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ference schemes. The 1st-CASAM is the most efficient way to compute exactly 
the 1st-order response sensitivities to model and boundary parameters, since it 
requires a single large-scale computation to solve the 1st-LASS, namely Equa-
tions (45) and (46) for determining the 1st-level adjoint function needed in the 
subsequent quadrature formulas to compute all of the response sensitivities us-
ing Equations (47)-(52). 

3.2. First-Order Sensitivities of the Rod’s Temperature 

The value of the heated rod temperature, ( ),T r z , at some location ( ),p pr z , 
can be represented in the form 

( ) ( )
( ) ( )

2

0 2

, d d ,
a

p
p p p

r r
T r z r r zT r z z z

r

δ
δ

−

−
= −∫ ∫





.          (60) 

As indicated in Equations (1)-(5), the imprecisely known parameters that 
characterize the benchmark heat transfer system are , , , , , , ,p inletq k h W c T a  . The 
known nominal values of these parameters will be denoted by using the super-
script “zero,” i.e., 0 0 0 0 0 0 0 0, , , , , , ,p inletq k h W c T a  . The arbitrary variations in the 
model parameters, around the respective nominal values, will be denoted as fol-
lows: , , , , , , ,p inletq k h W c T aδ δ δ δ δ δ δ δ  . For greater generality, it will be as-
sumed that the location ( ),p pr z  is also imprecisely known, being affected by 
variation (uncertainties) denoted as prδ  and pzδ  around the known nominal 
values denoted as ( )0 0,p pr z . The variations in the rod and coolant temperatures, 
respectively, caused by the imprecisely known model and boundary parameters 
will be denoted as ( ),T r zδ  and ( )flT zδ , respectively. 

The first-order sensitivities of ( ),p pT r z  to the imprecisely known model 
and boundary parameters is provided by the G-differential of Equation (60), 
which is defined as follows: 

( ) ( ) ( )
( )

( )

( ) ( )

( ){ } ( ){ }

00

0

2

0 2

0
0

0

d, d , ,
d

d

, , ,

a a

p p p p p p

p p
p p

dir ind

p p p p

T r z r r T r z T r z

r r r
z z z z

r

T r z T r z

εδεδ

εδ

ε

δ εδ
ε

δ εδ
δ εδ

δ δ

++

− +

=


  = +  


− − × − − 


= +

∫ ∫
 

 

    (61) 

where the direct-effect term ( ){ },p p direct
T r zδ  is defined as follows: 

( ){ } ( ) ( )
( )

( ) ( )
( ), ,

, ,
,

p p p p

dir

p p p p
z z r r z z r r

T r z T r z
T r z z r

z r
δ δ δ

= = = =

∂ ∂      = +   
∂ ∂      

, (62) 

while the indirect-effect term ( ){ },
ind

p pT r zδ  is defined as follows: 

( ){ } ( )
( ) ( )

00

0

02
0

0 2

, d , d
aind p

p p p

r r
T r z r r T r z z z z

r

δ
δ δ δ

−

−
−∫ ∫





 .       (63) 

https://doi.org/10.4236/ajcm.2020.102016


D. G. Cacuci 
 

 

DOI: 10.4236/ajcm.2020.102016 301 American Journal of Computational Mathematics 
 

This 1st-LFSS is obtained by determining the G-differentials of Equations 
(1)-(5), which are as follows: 

( ) ( )
00

0
0

0
0

d d cos ,
d d

T Tk k zr q q
r r r ε

ε

εδεδ εδ
ε ε εδ =

=

  ∂ ++ ∂     = − +   
∂ ∂ +

π
      

 

(64) 

( )0

0

d 0, at 0,
d

T T
r

r
ε

εδ

ε
=

 ∂ +  = = 
∂  

                 (65) 

( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( )

0 0 0
0

0

0

0 0 0 0

0 0

0

, ,d
d

d ,
d

, at ,fl fl

T a a z T a a z
k k

a a

h h T a a z T a a

T z T z r a

ε

ε

εδ εδ εδ
εδ

ε εδ

εδ εδ εδ εδ
ε

εδ

=

=

  ∂ + + +  − + 
∂ +  

 = + + + + 
− − =

       (66) 

( ) ( )

( ) ( )
( )( )

0

0

20 0

00 0

0

dd
d d

d cos ,
d

fl fl

p p

T z T z

z

a a q q z
W W c c

ε

ε

εδ

ε

εδ εδ

ε εδεδ εδ

=

=

  +  
 
  

 + + =  
++ +  

π
π

 

           (67) 

( )

0 0
0

0

0

0

d
d 2 2

d .
d

 

fl fl

imlet imlet

T T

T T

ε

ε

εδ εδεδ
ε

εδ
ε

=

=

     + + − + −     
       

 = + 
 

   

             (68) 

Carrying out in Equations (64)-(68) the differentiations with respect to ε  
and setting 0ε =  in the resulting expressions yields the following set of equa-
tions comprising 1st-LFSS: 

( )

( ) ( ) ( ) ( )
( )

0

0 0

0 2 00

,

,
cos sin ,

k r T r z
r r r

k T r z z q z zr q
r r r

δ

δ
δ δ

∂ ∂    ∂ ∂ 
 ∂∂

= − − + 
∂ ∂ 

π π



π


 



       (69) 

( ), 0, at 0,T r z r
r
δ∂

= =  ∂
                   (70) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ } ( ) ( )

( ) ( )

00 0

0

0

0 2 0
0 0

2

0 0 0

0
0

, ,
,

,

,
,

r ar a r a

fl flr a

r a

T r z T r z
k k a k T r z

r rr

h T r z T z h T r T z

T r z
a h

r

δ δ δ

δ δ δ

δ

== =

=

=

   ∂ ∂ ∂     − − −        ∂ ∂∂        

   = − + −  

 ∂ +  
∂  

(71) 
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( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )
( )

( )
( )

( )

2 20 0 00 0

0 0 0 0 0 20 0

2 20 0 0 0
2

2 2 00 0 0 0 0

0 0

2d cos
d

sin

, ,
2 2

fl
p p p

p

p p

fl

a q a q Wa q azT z
z W c W c W c

a q c a q zz
W c W c

Q z z

δ δδ
δ

δ
δ


  = + −  



− +



π



≤

π

− ≤

π

π









 



    (72) 

( ) ( )0

0

d
,

d 2
at

 

2.

fl
fl inlet inlet

T z
T z T T

z
z

δ δ δδ
= + =

= −





              (73) 

The first term on the right-side of Equation (69) can be simplified by using 
Equation (1) to obtain the following equation: 

( )

( ) ( ) ( )
( )

( )

0

0 0

0 0 2 00

,

cos sin .

k r T r z
r r r

q z q z zk q Q z
k

δ

δ δ δ

∂ ∂    ∂ ∂ 
 

= − + 
 

π π π
 

 



         (74) 

The terms containing derivatives of ( ),T r z  in Equation (71) can also be 
simplified using Equations (1) and (3) to obtain the following equation: 

( ) ( ) ( )

( ) ( ) ( )

0

0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

, ,

cos cos 1 cos .
22 2

fl
r a

k T r z h T r z T z
r

a q z a q z q h a zh k a
h k k

δ δ δ

δ δ δ

=

π

∂  − − −     ∂ 

 
= − − + 

 

π π
  

    (75) 

The 1st-LFSS comprises Equations (70), (72)-(74), and(75). As has been al-
ready discussed throughout this work, it is computationally expensive to solve 
repeatedly the 1st-LFSS for all possible parameter variations, and this computa-
tionally expensive endeavor can be circumvented by expressing the indi-
rect-effect term defined in Equation (63) in terms of the solution of the 1st-LASS, 
which will be constructed next by applying the 1st-CASAM outlined in the ac-
companying work [1]. 

The Hilbert space appropriate for the heat transport benchmark under con-
sideration comprises the space of all square-integrable two-component vector 
functions of the form ( ) ( ) ( ) †

1 2, ,u r z u z≡   u x , endowed with an inner product 
( ) ( ),u x xψ  of the form 

( ) ( ) ( ) ( ) ( ) ( )
00

0

2

1 1 2 2
0 2

, d d , ,
a

r r z u r z r z u z zψ ψ
−

≡ +  ∫ ∫u x x




ψ .     (76) 

Using the definition provided in Equation (76), construct the inner product of 
a square integrable vector function ( ) ( ) ( ), , flr z z = Ψ Ψ xψ , where ( ),r zΨ  
and ( )fl zΨ  denote the adjoint sensitivity functions that correspond to the 
forward functions ( ),T r zδ  and ( )flT zδ , with Equations (74) and (72), re-
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spectively, to obtain the following relation: 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

00

0

00

0

2 0

0 2

2

0 2

d
d d , ,

d

d d , .

a
fl

fl

a

fl fl

T zkr r z r z r T r z z
r r r z

r r z r z Q z z Q z

δ
δ

−

−

  ∂ ∂    Ψ +Ψ  ∂ ∂   

 = Ψ +Ψ 

∫ ∫

∫ ∫









   (77) 

The left-side of Equation (77) is now integrated by parts (twice over the varia-
ble r and once over the variable z) to obtain 

( ) ( ) ( )
( )

( ) ( )

( ) ( )

00

0

00

0

00

0

2 0

0 2

2

0 2

2 0

0 2

0 0

d
d d , ,

d

d
d d

d

,
d d ,

d
2 2

a
fl

fl

a
fl

fl

a

fl fl

T zkr r z r z r T r z z
r r r z

z
r r z T z

z

r zkr r z T r z r
r r r

r r T

δ
δ

δ

δ

δ

−

−

−

  ∂ ∂    Ψ +Ψ  ∂ ∂   

Ψ 
 = −     

 ∂Ψ ∂ +       ∂ ∂   

   
+ Ψ −Ψ   

   

∫ ∫

∫ ∫

∫ ∫













 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0 0

0

0

0 0

0

2
0 0

2

2
0 0

2 0

2 2

,
d , , ,

,
d , , , .

a

fl fl

r a

r

T

r z
z r z rk T r z T r z rk

r r

r z
z r z rk T r z T r z rk

r r

δ

δ δ

δ δ

− =

− =

    
− −    

     

∂Ψ ∂
+ Ψ − ∂ ∂ 

∂Ψ ∂
− Ψ − ∂ ∂ 

∫

∫

∫









 

   (78) 

Using the boundary condition given in Equations (70) and imposing the 
boundary condition 

( ),
0, at 0,

r z
r

r
∂Ψ

= =
∂

                    (79) 

eliminates the last term on the right-side of Equation (78), including the un-
known function ( ){ }

0
,

r
T r z rδ

=
∂ ∂   . Imposing the boundary condition 

( ) 0, a 2,0 tfl z zΨ = =                     (80) 

eliminates the unknown function ( )0 2flT zδ =   on the right-side of Equation 
(78). Using the boundary condition given in Equation (73) to replace the term 

( )2flT zδ = −  on the right side of Equation (78) and replacing the left-side of 
Equation (78) by the right-side of Equation (77) yields the following expression 
equivalent to Equation (78): 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

00

0

00

0

0

2

0 2

2 0

0 2

0

d d ,

,
d d ,

d
d

d 2

a

fl fl

a

a
fl

fl fl inlet

r r z r z Q z z Q z

r zkr r z T r z r
r r r

z
T z r r T

z

δ

δ δ

−

−

 Ψ +Ψ 

 ∂Ψ ∂=      ∂ ∂  

Ψ    + − − Ψ −        

∫ ∫

∫ ∫

∫










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( ) ( ) ( ) ( )0

0 0

2
0 0

2

,
d , , , .

r a

r z
z r z rk T r z T r z rk

r r
δ δ

− =

∂Ψ ∂
+ Ψ − ∂ ∂ 
∫




    (81) 

The unknown quantity ( ){ } 0,
r a

T r z rδ
=

∂ ∂   , which appears in the last term 

on the right-side of Equation (81) is eliminated by using the boundary condition 
given in Equation (75); this operation transforms Equation (81) into the follow-
ing form: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

00

0

00

0

00

0 0

2

0 2

2 0

0 2

2
0

0 2

0 0 0

d d ,

d,
d d ,

d

,
d d ,

2

d , ,

a

fl fl

a
fl

fl

a

fl inlet
r a

r r z r z Q z z Q z

zr zkr r z T r z r T z
r r r z

r z
r r T z T r z rk

r

z a z h a T r z

δ δ

δ δ

δ

−

−

− =

 Ψ +Ψ 

 Ψ ∂Ψ ∂  = + −        ∂ ∂       

∂Ψ  − Ψ − −    ∂   

− Ψ −

∫ ∫

∫ ∫

∫ ∫















( ){ }

( ) ( ) ( )

( )

0

0
0

0

0

2

2

2 0 0 0 0
0 0

0 0 0 0
2

0 0 0

0 0

d , cos cos
2 2

1 cos .
2

fl r a
T z

a q z a q zz a z a h k
h k

q h a za
k

δ

δ δ

δ

=
−

−

  

 π π
− Ψ −



  π − +  
  

∫

∫









 



 (82) 

The unknown quantity ( )0 ,T a zδ , which appears in third and fourth terms 

on the right-side of Equation (82), is eliminated by imposing the following in-
terface condition on the (adjoint) function ( ),r zΨ : 

( ) ( )0 0

0

,
, ,

at

r z
k h r z

r
r a

∂Ψ
− = Ψ

∂
=

.                  (83) 

Inserting Equation (83) into the right-side of Equation (82) reduces it to the 
following form: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

00

0

00

0

0

0

2

0 2

2 0

0 2

20 2
0 0 0

2

0 0 0 0 0
0

0 0

d d ,

d,
d d ,

d

d ,
2 2

22 2

a

fl fl

a
fl

fl

fl inlet fl

r r z r z Q z z Q z

zr zkr r z T r z r T z
r r r z

a
T h a z a z T z

a q a q qa h k a
h k

δ δ

δ δ

δ δ δ

−

−

−

 Ψ +Ψ 

 Ψ ∂Ψ ∂  = + −        ∂ ∂       

   − Ψ − + Ψ    

− − −

∫ ∫

∫ ∫

∫















( )
0

0

20 0
0

0 0
2

1 d , cos .h a zz a z
k −

   π
+ Ψ  

   
∫






(84) 

The two terms that contain the unknown function ( )flT zδ  are grouped to-
gether, transforming Equation (84) into the following form: 
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( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

00

0

00

0

2

0 2

20 2 0

0 2

0
0

0

0 0 0 0 0 0 0
0

0 0 0

d d ,

,
d d ,

2 2

d 2 ,
d

1
22 2

a

fl fl

a

fl inlet

fl
fl

r r z r z Q z z Q z

a r zkT r r z T r z r
r r r

z hT z a z
z a

a q a q q h aa h k a
h k k

δ δ

δ

δ δ δ

−

−

 Ψ +Ψ 

 ∂Ψ ∂ = − Ψ − +        ∂ ∂    

Ψ  + − + Ψ     

  
− − − +  

 

∫ ∫

∫ ∫











( )
0

0

2
0

0
2

d , cos .zz a z
−

 π
Ψ

 
∫






(85) 

The second-term on the right-side of Equation (85) will represent the indi-

rect-effect term ( ){ },
ind

p pT r zδ  defined in Equation (63) by requiring that the 

following equations be satisfied: 

( ) ( ) ( )
0 0

0 0 0 0,
, 0 , ,

2 2p p

r z
k r r r z z r a z

r r
δ δ

∂Ψ ∂
= − − ≤ < − ≤ ≤ ∂ ∂ 

 

  (86) 

( ) ( )
0 0 0

0

2 , 0, ,
2 2

fl z h a z z
z a

∂Ψ
− + Ψ = − ≤ ≤

∂
            (87) 

Inserting the relations provide in Equations (63), (86) and (87) into Equation 
(85) and re-arranging the resulting equation yields the following expression for 

the indirect-effect term ( ){ },
ind

p pT r zδ :  

( ){ }

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( )

00

0

0

0

2

0 2

20 0 0 0 0 0 0
0 0

0 0 0 0
2

20

,

d d ,

1 d , cos
22 2

.
2 2

p p indirect

a

fl fl

fl inlet

T r z

r r z r z Q z z Q z

a q a q q h a za h k a z a z
h k k

a
T

δ

δ δ δ

δ

−

−

 = Ψ +Ψ 

  
+ − − + Ψ  

   

 + Ψ − 

π

 

∫ ∫

∫













(88) 

Inserting the definitions provided for ( )Q z  and ( )flQ z  in Equations (74) 
and (72), respectively, into Equation (88) yields the following expression: 

( ){ }

( ) ( ) ( )

( )
( )

( )

( )
( )

( )
( )

( )

00

0

00

0

0

0

20

0 0
0 2

20

2 00 0 2

2 20 0 0 2
2

2 00 0 0
2

,

d , cos d

d , sin d

sin d
2

p p indirect

a

a

fl

p

T r z

q zk q r r r z z
k

q zr r r z z z

a q a zz z z
W c

δ

δ δ

δ

δ

−

−

−

  π
= − Ψ 
 

π π
+ Ψ

π
+ π Ψ

∫ ∫

∫ ∫

∫


























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( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )
( )

( )
( )

( ) ( ) ( ) ( )

0

0

0

0

2 2 20 0 0 00 0

0 0 0 0 20 0

2 20 0 02

2 00 0
2

20 0 0 0 0 0 0
0 0

0 0 0 0
2

2
2

cos d
2 2

1 , cos d .
22 2

p p p

p
fl fl inlet

p

a a q a q Wa q a
W c W c W c

a q c azz z T
W c

a q a q q h a za h k a a z z
h k k

δ δδ

δ
δ

δ δ δ

−

−


+ π + −




π  − Ψ + Ψ −   

   π
+ − − + Ψ  

   

∫

∫















(89) 

The 1st-LASS, which comprises Equations (79), (80), (83), (86) and (87), is in-
dependent of parameter variations and needs to be solved only once for each re-
sponse of interest. Therefore, once the adjoint functions have been computed for 
the specific response, they are used in Equation (89) to obtain very efficiently all 
of the first-order response sensitivities to all model parameters. 

It follows from Equation (89) that the respective partial sensitivities of 
( ),p pT r z  have the following expressions: 

( )
( )

( )
( )

0 00

0 0

402 2

0 0 0 0
0 2 2

,
d , cos d cos d ,

2

a
p p

fl
p

aT r z z zr r r z z z z
q W c− −

∂ π
= − Ψ + Ψ

π
∂

π
∫ ∫ ∫

 

 

 

 (90) 

( )
( )

( ) ( )
0 00

0 0

20 02 20
0

0 0 0 0
0 2 2

,
d , cos d , cos d ,

2

a
p p a qT r z q z zr r r z z a z z
k k k− −

∂
= Ψ

π
− Ψ

∂
π

∫ ∫ ∫
 

 

 

(91) 

( ) ( ) ( )
0

0

20 0 2
0

0 0
2

,
, cos d

2
p p a qT r z za z z
h h −

π∂
= Ψ

∂ ∫






,        (92) 

( ) ( )
( )

( )
0

0

40 0 2

2 00 0
2

,
cos d

2

p p
fl

p

q aT r z zz z
W W c −

∂
= − Ψ

∂

π π
∫






,       (93) 

( ) ( )
( )

( )
0

0

40 0 2

2 00 0
2

,
cos d

2

p p
fl

p p

a qT r z zz z
c W c −

∂ = − Ψ
∂


π π


∫






,      (94) 

( ) ( )20,

2 2
p p

fl
inlet

aT r z

T

∂  = Ψ − ∂  



                (95) 

( )
( )

( )

( )
( )

( )

00

0

0

0

20 0

2 00 0 2

40 0 2
2

2 00 0 0
2

,
d , sin d

2

sin d ,
2

a
p p

fl

p

T r z q q zr r r z z z

a q zz z z
W c

−

−

∂
=

π π π

π

Ψ
∂

+ Ψπ

∫ ∫

∫









 







       (96) 

( ) ( )
( )

( )

0

0

0

0

30 0 2

0 0 0
2

20 0 0 0
0

0 0
2

,
cos d

1 , cos d ,
2

p p
fl

p

a qT r z zz z
a W c

a q h a za z z
k

−

−

∂
= Ψ

∂

 
−

π
π

π
+ Ψ 

 

∫

∫













       (97) 
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The following additional sensitivities arise from the direct-effect term 

( ){ },
dir

p pT r zδ  defined in Equation (62): 

( ) ( ) ( )2 20 2 0 00
0

0 0 0 0 0 0 0

,
sin cos

4 2
pp p p p

p p

a r a qT r z z zaq
z k h W c

 −∂  = − + +
 ∂
 

π



π ππ
  

,   (98) 

( ) 0 0

0 0

,
cos

2
p p p p

p

T r z r q z
r k

∂ π
= −

∂ 

.                     (99) 

Solving the 1st-LASS yields the following expressions for the adjoint functions 
( ),r zΨ  and ( )fl zΨ , respectively: 

( ) ( ) ( )
0

0 0 0 0

0 0
0

, ,

for 0 , , , ,
2 2

1 1 1ln lnp p

p p

p p

r a
r r

r z z z H r r

r r a

a k

z

h k

z

δ
 
−Ψ = − − −

≤ ≤ − ≤ ≤

+ 
  

 

     (100) 

( )
( )

( )
( )

( )
0 0

2 20 0

2 2  1 , , .
2 2fl p p p

a a
z H z z H z z z zΨ = − − − ≤ ≤ − = 

 

  (101) 

Using the results obtained in Equations (100) and (101) yields the following 
expressions for the integrals in Equations (90)-(97) involving the adjoint func-
tions ( ),r zΨ  and ( )fl zΨ : 

( )
( ) ( )

0

0 0

2 0

0 0 0
2

20
2

2 0
cos d cos d si 12 2 n

pz
p

fl
a a

zz zz z z
− −

ππ π  
Ψ = +=

π 
 

∫ ∫


 



  

,   (102) 

( )
0

0

2
0

0 0
2

0 0, cos d cos1 pzza z z
a h−

Ψ =
ππ

−∫




 

             (103) 

( )
( )

0

0
2

202 0

0 0 0
2

0
sin d sicos n 12 p p p

fl

z z zzz
a

z z
−

 π ππ  = −
π π 

  
Ψ + +  

   
∫








  

.   (104) 

Replacing the results obtained in Equations (100) and (101) yields the follow-
ing expressions for the partial sensitivities of ( ),p pT r z  with respect to all 
model and boundary parameters: 

( ) ( ) ( )2 20 2 0 00

0 0 0 0 0 0

,
cos sin 1

4 2
pp p p p

p

a r aT r z z za
q k h W c

 −∂   = + + +  ∂   

π π





 

,   (105) 

( ) ( )
( )

20 2
0

2 00

,
cos

4

pp p pa rT r z z
q

k k

−∂ π
= −

∂ 

,               (106) 

( )
( )

0 0

2 00

,
cos

2

p p pT r z za q
h h

∂
−

π
=

∂ 

,                (107) 

( ) 20 0 0

0 0 0

,
sin 1p p p

p

T r z zq a
W c W

∂   
= − +  ∂   

π







,            (108) 
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( ) 2
0 0 0

0 0 0

,
sin 1p p p

p p

T r z zq a
c W c

∂    
= − +    ∂   

π




,            (109) 

( ),
1p p

inlet

T r z

T

∂
=

∂
,                       (110) 

( )
( )
( )

2 20

2 00

20 0

0 0 0

0

0 0

0 0

,
sin

4

sin 1 ,

2

cos

p p p p

p p p

p

T r z a r zq z

a q z z z
W

a

c

k h
ππ

−

π π

∂  −
=

π
−

+  ∂  

 
+ + + 

 

 



  

      (111) 

( ) 0 0 0 0 0

0 0 0 0 0 0

, 1 cos sin 1
2

2p p p p

p

T r z z zq a a q
a k h W c

π∂   
= + + +  ∂   

π





 

.    (112) 

( ) ( ) ( )2 20 2 0 00
0

0 0 0 0 0 0 0

,
sin cos

4 2
pp p p p

p p

a r a qT r z z zaq
z k h W c

 −∂  = − + +
 ∂
 

π



π ππ
  

,(113) 

( ) 0 0

0 0

,
cos

2
p p p p

p

T r z r q z
r k

∂ π
= −

∂ 

.               (114) 

For verification and validation purposes, the solution of the 1st-LFSS, com-
prising Equations (70), (72)-(74), and (75) is presented below: 

( ) ( )
( )

( )
( )
( )

( )
( )
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 





(115) 

where the expression of ( )0
flT zδ  is provided in Equation (14). It is evident that 

the expression provided in Equation (115) is the total differential with respect to 
the model and boundary parameters of the expression of ( ),T r z  given in Equ-
ation (6). The additional sensitivities of the response ( ),p pT r z  arise directly 
from the direct-effect term defined in Equation (62). 

Notably, the 1st-LASS is solved in a manner that is “reverse/backwards” by 
comparison to the way in which solution proceeds for solving the 1st-LFSS as 
well as the original heat transport model. Thus, while the 1st-LFSS and the origi-
nal heat transport model are solved by starting with the fluid flow equation 
(which is solved from the inlet to the outlet of the fluid flow) and subsequently 
solving the heat conduction equation in the rod, the solution of the 1st-LASS 
proceeds in the reverse manner, by first solving the heat conduction in the rod, 
followed by solving the fluid flow equation from the outlet to the inlet. 
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4. Concluding Remarks 

The first-order comprehensive adjoint sensitivity analysis methodology (1st-CASAM) 
has been presented in a previous work1. The 1st-CASAM enables the most effi-
cient computing of the exact first-order response sensitivities for large-scale 
coupled nonlinear physical systems characterized by imprecisely known para-
meters characterizing the systems, the interfaces between systems and the sys-
tems’ domain boundaries. The larger the number of imprecisely known parame-
ters, the more efficient the 1st-CASAM becomes for computing the sensitivities 
of a scalar-valued response to the respective parameters. 

This work has illustrated the application of the 1st-CASAM to a benchmark 
problem [2] [3] [4] that models heat conduction and convection in a physical 
system comprising an electrically heated rod surrounded by a coolant which si-
mulates the geometry of an advanced (“Generation-IV”) nuclear reactor [5]. 
This benchmark has deliberately been chosen for illustrative purposes, because it 
admits exact closed-form solutions for the sensitivities of the temperature dis-
tribution in the coupled rod/coolant system. This work has highlighted the novel 
finding that response sensitivities to the imprecisely known domain boundaries 
and interfaces can arise both from the definition of the system’s response as well 
as from the equations, interfaces and boundary conditions that characterize the 
model and its imprecisely known domain. Furthermore, the novel analytical re-
sults obtained for the sensitivities of the temperature distribution in the coupled 
rod/coolant system to the model’s internal interfaces and external boundaries 
can be used to benchmark thermal-hydraulics production and/or commercial-
ly-available codes, such as the FLUENT Adjoint Solver [6]. 

The 1st-CASAM fundamentally generalizes and extends all previously pub-
lished theoretical works on this topic, enabling the quantification of the effects of 
manufacturing tolerances on the responses of physical and engineering systems. 
Ongoing research will generalize the methodology presented in this work, aim-
ing at computing exactly and efficiently higher-order response sensitivities for 
coupled systems involving imprecisely known interfaces, parameters, and boun-
daries. As is well known [7], the availability of response sensitivities to impre-
cisely known parameters, interfaces and boundaries is essential for a variety of 
subsequent uses, including uncertainty quantification, optimization, data assi-
milation, model calibration and validation, and reduction of uncertainties in 
predicted model results. 
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Nomenclature 

[ ]ma : radius of electrically heated rod; 
[ ]m : length of electrically heated rod and length of coolant channel; 

z: coordinate along the rod’s axial (customarily, the vertical) direction; 
1 1J kg Kpc − − ⋅ ⋅  : coolant heat capacity; 
2 1W m Kh − − ⋅ ⋅  : heat transfer coefficient; 
1 1W m Kk − − ⋅ ⋅  : rod conductivity; 
3W mq − ⋅  : volumetric source; 

[ ]KinletT : inlet temperature; 
1kg sW − ⋅  : mass flow rate; 

( ),T r z : steady-state temperature distribution within the heated rod; 
( )flT z : steady-state temperature distribution within the coolant (fluid). 
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