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Abstract 

 
In this paper, the triple fractional Riccati expansion method is applied to solve fractional 

differential equation. To illustrate the effectiveness of the method, the nonlinear space-time 

fractional Klein–Gordon equation is studied. The obtained solutions include generalized 

trigonometric and hyperbolic function solutions. Among these solutions, some are found for the 

first time. 

Keywords:  Triple fractional Riccati expansion method, nonlinear fractional differential equation, 

modified Riemann–Liouville derivative, exact solution, nonlinear space-time 

fractional Klein–Gordon equation. 
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1 Introduction 

 
Many phenomena in physics, engineering, biology, chemistry, finance and other areas of 

applications are described by nonlinear fractional differential equations (FDEs).  The fractional 

order partial differential is the generalizations of classical integer order partial differential 

equations. Fractional derivatives provide an excellent instrument for the description of memory 

properties of various processes. This is the main advantage of fractional derivatives in comparison 

with classical integer- order models, in which such effects are in fact neglected [1- 7]. Searching 

for analytical and numerical solutions of FDEs is currently a very active area of research. In the 

past two decades, both mathematicians and physicists have made much significant work in this 

direction and presented some effective methods. Examples include: the Laplace transform method, 

the Fourier transform method, the iteration method, the operational method, finite difference 

method, finite element method, Adomian decomposition method, differential transform method, 

variational iteration method, homotopy perturbation method, the fractional sub-equation method, 

and generalized fractional sub-equation method [8-33]. Recently, Abdel-Salam and Yousif [21] 

introduced the fractional Riccati expansion method by solving the fractional differential equation 
2 , 0 1,D F A B Fα

ξ α= + < ≤   to obtain analytical solutions of FDEs with constant 

coefficients. They solved the Space-time fractional KdV equation, regularized long-wave 

equation, Boussinesq equation and Klein–Gordon equation. In this paper, we generalized this 

method by introducing the triple fractional Riccati expansion method to obtain many exact 

travelling wave solutions of nonlinear FDEs with the Jumarie’s modified Riemann–Liouville 

derivative [22–23]. 

 

This paper is organized as follows: the description of the triple fractional Riccati expansion 

method is presented in section 2. In section 3, the solution of the space-time fractional Klein-

Gordon equation is studied. In section 4, discussion and conclusion are presented. 

 

2  Jumarie’s Modified Riemann–Liouville Derivative and Triple 

Fractional Riccati Expansion Method  

 
The Jumarie’s modified Riemann–Liouville derivative of order α  is defined by the expression 

[22, 23] 
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Some useful formulas and results of Jumarie’s modified Riemann–Liouville derivative were 

summarized in [23]. Three of them (which will be used in the following sections) are 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(24), 3464-3475, 2014 

 

 

3466 

 

( 1)
, 0,

( 1 )
xD x x
α γ γ αγ

γ
γ α

−Γ +
= >

Γ + −
                                      (2) 

 

[ ( ) ( )] ( ) ( ) ( ) ( ),x x xD f x g x g x D f x f x D g x
α α α= +                                 (3) 

 
' '[ ( )] [ ( )] ( ) [ ( )]( ) .

x g x g x
D f g x f g x D g x D f g x gα α α α= =                          (4) 

 

We outline the main steps of the triple fractional Riccati expansion method for solving FDEs. For 

a given nonlinear FDE, say, in two variables x  and t  
 

2 2( , , , , , ...) 0,t x t xP u D u D u D u D u
α α α α =                                            (5) 

 

where 
tD u
α

  and 
xD u
α

 are Jumarie’s modified Riemann–Liouville derivatives of u , 

( , )u u x t= is unknown function, P  is a polynomial in u and its various partial derivatives in 

which the highest order derivatives and nonlinear terms are involved. 

 

Step 1. By using the travelling wave transformation: 

 

( , ) ( ),u x t u x tξ ξ ω= = + ,                                                (6) 

 

where ω  is a constant to be determined later, the nonlinear FDE (5) is reduced to the following 

nonlinear fractional ordinary differential equation (FODE) for ( )u u ξ= : 

 
2 2 2( , , , , , ...) 0,P u D u D u D u D uα α α α α α

ξ ξ ξ ξω ω =%                                    (7) 

 

Step 2. We suppose that ( )u ξ  can be expressed as 
 

1
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n

i

i i i

i

u a h a f b g c hξ −
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= + + +∑                                     (8) 

 

where 0 , , ,i i ia a b c are constants to be determined later, n  is a positive integer determined by 

balancing the highest order derivatives and nonlinear terms in equation (5) or equation (7) and 

( ), ( ), ( )f f g g h hξ ξ ξ= = =  satisfies the following fractional Riccati equations: 
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where , 0B A ≠  are arbitrary constants and 1, 1, 1k δ ε= ± = ± = ± . Using the Mittag-Leffler 

function in one parameter

0

( ) ( 0)
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k

k

z
E z
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α α
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∞

=

= >
Γ +

∑ , we obtain the following solution 

of equation (9): 

 

Case 1: If 1, 1,k δ= = − and 1,ε =  then (9) has the solution 
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Case 2: If 1, 1,k δ= = − and 1,ε = −  then (9) has the solution   
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Case 3: If 1, 1,k δ= − = and 1,ε =  then (9) has the solution   
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Case 4: If 1, 1,k δ= − = − and 1,ε =  then (9) has the solution   
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where the generalized hyperbolic and trigonometric functions are defined as 
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Step 3. Substituting the fractional Riccati expansion method (8) into the FODE (7), then the left-

hand side of equation (7) can be converted into a polynomial in 
i j l

f g h  

0, 1, 0, 1, 0,1, 2,3,...i j l= = = . Setting each coefficient of the polynomial to zero yields 

system of algebraic equations for 0 1 1 1, , ..., , , ..., , , ...,n n na a a b b c c , and ω . 

 

Step 4. By solving the system obtained in step 3, the constant  0 1, , ..., ,na a a  

1 1, ..., , , ...,n nb b c c ,, and ω  can be expressed by the parameters A  and .B  Depending on the 

chosen values of , ,k δ and ε  the functions ( ), ( ), ( )f g hξ ξ ξ  possesses the travelling wave 

solutions as given above; then the fractional triple Riccati expansion method (8) has the travelling 

wave solution of the nonlinear FDEs (5). 

 

Remark 1. When 1α = equation (9) becomes equation (1); see [24]. 

 

Remark 2 It can be easily found that if 1,α =  and 0B = , then equation (9) becomes equation 

(6). For more details see [25]. 

 

3 Space-time Fractional Klein–Gordon Equation 

 
The nonlinear Klein–Gordon equation appears as a model of self-focusing waves in nonlinear 

optics [26] and its physical motivation is present in various branches of physics; examples include 

plasma physics and fluid mechanics. In addition to, it is relativistic quantum equation for particles 

with zero spin [27, 28]. The nonlinear space-time fractional Klein–Gordon equation, which is a 

transformed generalization of the nonlinear Klein–Gordon equation, is defined as follows: 

 
2 2 3 0, 0 1t xD u D u u u
α α µ τ α− + − = < ≤ ,                   (15) 
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where ( , ),u u x t µ=  , τ  are arbitrary constants and α  is the fractional order derivative. 

 

By using the travelling wave transformation ( , ) ( ),u x t u x tξ ξ ω= = + , where ω  is the 

dimensionless velocity of the wave, then, (15) is reduced to the following nonlinear FODEs:  

 
2 2 3( 1) 0D u u uα α

ξω µ τ− + − = .                                          (16) 
 

Balancing 
2D uα
ξ  with 

3
u gives 1n = . Therefore, the solution of equation (16) can be 

expressed as 
 

0 1 1 1( ) ( ) ( ).u a a f b g c hξ ξ ξ= + + +                                   (17) 

 

Substituting (17) into (16) using (9) and setting the coefficients of   
i j l

f g h  to zero, we obtain 

system of algebraic equations for
0 1 1 1, , ,a a b c , andω . Solving this system, we obtain the 

following cases: 
 

Case 1:  
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4
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δ ε ω µ
τ
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Case 9:  

2
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2 2 (1 )
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Case 10:  

2
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τ
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Case 11:  

2
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1, 1, 1, , 0, 1, 1 .k a B a b c A
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δ ε ω µ
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2
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2 2 (1 )
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A A A
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+
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Therefore, the analytical solutions of the space-time fractional Klein–Gordon equation are 
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When 1α = , we obtain the nonlinear Klein–Gordon equation 

 

 
3 0,tt xxu u u uµ τ− + − =                                              (42) 

 

as special case of equation (15).  Solutions given in equations (30) - (41) are reduced to the 

following solutions of the Klein-Gordon equation (42) [24] 

1 2
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KG
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2
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3 2 2

2 sinh( ) 1 cosh( )
, 1 ,

1 cosh ( ) 1 cosh ( )
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4 2

2 1 1
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ω ω µ

τ
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6 2 2
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11
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.  (54) 

 

4 Discussion and Conclusion 

 
The triple fractional Riccati expansion method has been used to construct more types of analytical 

solutions of the space-time fractional Klein–Gordon equation. We have obtained many solutions 

including generalized hyperbolic and trigonometric functions. With the best of our knowledge 

some of these solutions are obtained for the first time. Possible applications of the results obtained 

in this paper are in mathematics and physics. Also, we are investigating how our method can be 

modified to treat higher dimensional FDEs, vector non-linear fractional evolution equations, and 

other FDEs of a different kind. 
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