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Abstract 
 
The development of any conjugate gradient method could be viewed from the perspective of 

approximating an objective function )(xf  by a functional )(xF  noting that the properties of 

the functional can be used to characterize the method. Using the functional )(xF , the new 

conjugate gradient method was developed and used to solve many nonlinear optimization 

problems with high efficiency and accuracy. The numeric analysis of its stability and 

convergence becomes imperative in order to establish the reliability of the method and satisfy 

the yearnings of its increasing users. In this paper, we present the stability and convergence 

analysis of the new conjugate gradient method. 

Keywords: Conjugate gradient method, convergence, stability, objective function. 

 

1 Introduction 
 
The new conjugate gradient method (NCGM) [1] is an effective iterative scheme for optimizing 

non-linear objective functions involved in many optimization problems. It is robust and generally 

able to achieve rapid convergence to an accurate solution. The traditional criterion for ensuring 

that a numerical method is stable is called absolute-stability [2]. A conjugate gradient method is 
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said to be absolutely stable for given step lengths α  if, for these α , the error bound || jE  

satisfy the criterion njE j ...,,2,1,0,1|| =< . An interval ),( ba  of the real line is said to 

be an interval or region of absolute stability if the method is absolutely stable for all α ∈ ),( ba  

[3]. Numerical stability analysis of NCGM is carried out using the basic properties of Lanczos 

algorithm for tridiagonalizing a matrix while its absolute stability proof is derived from the error 

analysis. 

 

Every conjugate gradient algorithm is known to be closely related to Lanczos algorithm for 

tridiagonalizing a matrix [4]. Greenbaum [5,6] have considered the close connection between the 

Lanczos and conjugate gradient algorithm in the analysis of stability of conjugate gradient 

computations under perturbations in finite arithmetic. Paige [7,8,2] stated that every conjugate 

gradient method (CGM) is a tridiagonalizing procedure. Greenbaum, amonst others, agreed with 

Paige and added that the symmetric tridiagonal matrix produced by symmetric Lanczos process 

gives the same pivot recurrence as the tridiagonal matrix produced by the CGM. They concluded 

that if the original matrix involved in the CGM is symmetric and positive definite, then, the CGM 

is absolutely stable. 

 

In section 2, we describe the NCGM with its algorithm and how it satisfies the convergence 

theorem. In section 3, we explain the basic vector updates for the search directions. The natural 

association between the new conjugate gradient algorithm and the Lanczos process has been 

established in section 4. This exercise represents the stability proof of NCGM. Some numerical 

examples were considered in section 5. The examples confirmed that the error bound || jE , in 

each case, satisfy the criterion njE j ...,,2,1,0,1|| =< . Section 6 summarizes the findings 

of this paper with a conclusion. 

 

2 The New Conjugate Gradient Method 

 
The new conjugate gradient method has been designed to optimize a non-linear objective 

functional, F: 
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)(xF  approximates )(xf  at point 
nx ℜ∈  and )()( xfxg ′= . The following algorithm 

characterizes the NCGM.  

 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(24), 3508-3522, 2014 

 

 

3510 
 

2.1 Algorithm (NCGM) 

 

i. Input initial values .0000 gGDandx −=−=  

ii. Repeat: 

a. Find step length kα such that                                                                            

0

)(min)(
>

+=+
α

αα kkkkk DxFDxF   

b. Compute new point:                                                                                                               

 kkkk Dxx α+=+1  

c. Update search direction: 

kkkk DGD β+−= ++ 11 ,                                                               

[ ])()2(
!2

1
1 kkkk xgxxgG +∆+=+                                                   
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+=β ( ) .2

1

k

T

kk GGG =                                                                           

                kkk GGy −= +1                                                                              

d. Check for optimality of g :  

        Terminate iteration at step m when mg  is so small that mx  is an acceptable 

estimate of the optimal point 
*

x  of  F . If not optimal set .1+= kk  

 

2.2 Convergence of the New Conjugate Gradient Method 

 
In order to establish the convergence of the above algorithm, we assume that the objective 

function satisfies the following conditions: 

 

1.   F is bounded below in 
Nℜ  and is continuously differentiable in a neighborhood Z of the 

level set { })()(:, 11 xFxFxxL
N ≤ℜ∈=  

2.   The gradient )(xF∇  is Lipschitz continuous in Z, namely, there exists a constant 

0>L  such that 

ZyxanyforyxLyFxF ∈−≤∇−∇ ,||,||||)()(||                                    (3)    

 

2.3 Lemma (Existence of a Global Optimum of f ) 

 

Suppose that 1x  is a starting point for which the above assumptions are satisfied. Consider the 

conventional conjugate gradient method where kd is the descent direction and kα (the step length 

of line search) satisfies the standard Wolfe conditions. Then, we have that 
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Proof. (See the proof by Dai and Yuan [9]) 

 
Dai and Yuan proved this lemma for the algorithm of any conventional conjugate gradient method 

(CGM). The proof for our algorithm is same when we put )( kxG  in place of )( kxg  and kD  in 

place of kd . Dai and Yuan made it simple to see that with 
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Hence, 
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2.4 Theorem (Convergence of A Conventional CGM) 

 

Suppose that 1x is a starting point for which the above assumptions and the lemma are satisfied. 

Let ,...}2,1,{ =kxk  be generated by an algorithm for a conventional CGM. Then, the 

algorithm either terminates at a stationary point or converges in the sense that 

 

0||)(||inflim =
∞→

k
k

xg                                                                                                        (6) 

      

Proof: (See the proof by Dai and Yuan [9]) 

 

Dai and Yuan used proof by contradiction to prove this theorem for a conventional CGM. The 

proof of this theorem for the above algorithm is same when we put )( kxG  in place of )( kxg  

and kD  in place of kd . It is not difficult to see that 

 

0||)(||inflim =
∞→

k
k

xg  when )( kxg =0(zero vector) and kx∆ =0 (zero vector, no further 

improvement on kx ). Hence, with [ ])()2(
!2

1
1 kkkk xgxxgG +∆+=+  we have 
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02/||)()2(||inflim||)(||inflim 1 =+∆+=
∞→

+
∞→

kkk
k

k
k

xgxxgxG  

This implies that 0||)(||inflim =
∞→

k
k

xG . We conclude that the new conjugate gradient method 

will converge to the global optimum of F  and hence .f  

 

3 Basic Vector Updates 

 
The two basic vector updates needed to update the search direction and the computed solutions by 

NCGM are      

                                                                                

kkkk DrD β+= ++ 11                                                                                                           (7) 

 

and 

   

kkkk WPrr α−=+1                                                                                                               (8) 
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4 An Absolute-Stability Proof: (A New Conjugate Gradient Method) 

  
Here, we need to show that the symmetric tridiagonal matrix produced by the symmetric Lanczos 

process gives the same pivot recurrence as the tridiagonal matrix produced by the NCGM. Also, 

we need to show that the error bound || jE  satisfy the criterion njE j ...,,2,1,0,1|| =< . 

 

In line with Hageman [10] and Paige [2], the two basic vector updates of the NCGM given in 

equations (3) and (4) can be summarized as 

 

 RPUWPVJIR ==− ,)(                                                                                              (10) 
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where R and P are matrices containing the vector sequences }{ kr  and }{ kp as columns. 

( ) ||))((||
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(),(, 1

1, cIJdiag
c

UandcdiagVJ
k

kji −==== −
+

β
αδ . It follows from 

equation (10) that 

 

WPVRJI 1−=−  

WPRVJI
11)( −− =−  

WPURUVJI 11)( −− =−          

WRR 1−= , a tridiagonal matrix 

With UVJIH 1)( −−= , a tridiagonal matrix, we have that 

RHWR =  

since 

UVJIRRH 1)( −−=  

        UWPVV
1−=  

       WPU=  

      WR=   

 

The Lanczos method for constructing an orthonormal matrix Q that reduces W to symmetric 

tridiagonal form T by WQQT T=  could be constructed from the NCGM by letting ii Dq =  be 

the diagonal elements of Q. The orthonormal tridiagonalization becomes QTWQ = with 

HCCTRCQ 11, −− == . Using the fact that H is tridiagonal and that TCCH
1−=  with C 

diagonal, we see that the factorization of T generates the same pivot sequence as W. This is true 

since 

 

TCCHTCCH == − ;1
 

1−= WRCWQ  

       RHWRRHC == − ;1
 

       QCRQCHC == − ;1
 

       TCCHQTCC == − ;1
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eigenvalues of kcF ′′  respectively. *x is the exact solution of the optimization problem stated in 

equation (1).  It follows that 
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implies that  11 <−kZ . Convergence of the new conjugate gradient method ensures that  

∞→→− kasEk 0|| 1 . We have shown that the error bound 

nkEZE kkk ...,,2,1,1|||| 11 =<≤ −−   

 

defines the region of absolute stability of the new conjugate gradient method. We note that 

njxFj ,...,4,3),( =∇  are the matrix vector differentials of )(2 xF∇ . Therefore, if )(2 xF∇  

is symmetric, then, W must be symmetric too. Also, W must be positive definite since A = 

)( 0

2
xF∇  must be positive definite for an optimal point of F to exist. Since W is symmetric and 

positive definite, we conclude that the new conjugate gradient method is absolutely stable. 

 

5 Numerical Examples 

 
Numerical results obtained from the optimization of the following problems [11] are hereby 

presented. 

 

Problem 1(Rastrigin function; n=2): 

Minimize ( ))2()2(1020),( 21

2

2
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1 xCosxCosxxyxF ππ +−++= , 

]0,0[*],1.0,1.0[0 == xx  

Problem 2: 

Minimize ( ),12424)(),( 221

2
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2

1121 ++++= xxxxxxExpxxF  
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]1,5.1[*],1,1[0 −=−= xx  

Problem 3: 

Minimize ,)1()(),(
2

2

2

2

2

121 −+−= xxxxxF  

]1,1[*],0,1[0 == xx  

Problem 4: 

Minimize 2

3

121 )1(),( xxxxf ++=  
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.0,01 21 ≥≥− xx  

]0,1[* =x  

Problem 5: 

Minimize ( )∑
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1

22 )()(1.0),(
i
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11 1.0 −− += iii uxx  

.10...,,2,1;5.0,1 00 === iux  

 

Problem 6: 

Minimize ∫=
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4 )(
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),( dttuuxI  
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1.0,2)0(;0)1(,1)0(;10);()( =∆−===≤≤+=
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0* =x ,  29735.1* −=u  

 
The following Tables (1-6) and Figs. (1-6) confirm the fact that the error bounds generated by 

NCGM satisfy the condition nkEZE kkk ...,,2,1,1|||| 11 =<≤ −−   

 

Table 1. Solution of problem 1 by NCGM 

                    

No. of 

iterations 1x  2x  ),( 21 xxF  
Error bound 

   || kE = |*| xxk −  

1 0.1 0.1 3.824634 0.141421 

2 0.001849 0.001849 0.001351 2.615534E-03 

3 0.000037 0.000037 0.000001 5.166958E-05 

4 0.000001 0.000001 0 1.020735E-06 

 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(24), 3508-3522, 2014 

 

 

3517 
 

 
 

Fig. 1. Error bound of problem 1 by NCGM 

 

Table 2. Solution of problem 2 by NCGM 
 

No. of 

iterations 1x  2x  ),( 21 xxF  

 

Error bound 

   || kE = |*| xxk −  

1 -1 1 1.839397 0.5 

2 -1.133956 0.732088 1.724263 0.453613 

3 -1.547138 0.938846 1.789058 7.721252E-02 

4 -1.512419 1.008243 1.78498 1.490518E-02 

5 -1.498656 1.001342 1.785044 1.899201E-03 

6 -1.499497 0.999665 1.785041 6.045778E-04 

7 -1.500055 0.999945 1.785041 7.752504E-05 

8 -1.50002 1.000013 1.785041 2.429327E-05 
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Fig. 2. Error bound of problem 2 by NCGM 
 

Table 3. Solution of problem 3 by NCGM 
 

No. of iterations 
1x  2x  ),( 21 xxF  

Error bound 

   
|| kE = |*| xxk −  

1 1 0 2 1 

2 0.5002 0.4998 0.3125 0.707107 

3 0.99997 1.001372 0.000004 1.371892E-03 

4 1.00054 1.000814 0.000001 9.764222E-04 

5 0.999993 1.000252 0 2.523227E-04 

6 1.000099 1.000149 0 1.789777E-04 

7 0.999999 1.000046 0 4.554963E-05 

8 1.000018 1.000027 0 3.219506E-05 

9 1 1.000008 0 8.070761E-06 

10 1.000003 1.000005 0 5.683448E-06 

11 1 1.000001 0 1.402926E-06 

12 1.000001 1.000001 0 9.841288E-07 

 

 
 

Fig. 3. Error bound of problem 3 by NCGM 
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Table 4. Solution of problem 4 by NCGM 
 

No. of 

iterations 1x  2x  ),( 21 xxF  

 

Error bound 

   
|| kE = |*| xxk −  

1 1.2 0.2 3.749334 0.2 

2 1.139556 0.2604439 3.525193 0.139556 

30 1.000002 0.03880354 2.705478 1.788139E-06 

31 1.000002 0.0388035 2.705478 1.788139E-06 

32 1.000002 0.0388035 2.705478        1.788139E-06 

33 1.000002 0.0388035 2.705478 2.026558E-06 

34 1.000002 5.871513E-06 2.66668 2.026558E-06 

35 1.000002 3.903678E-06 2.66668 2.026558E-06 

36 1.000002 3.928141E-06 2.66668 2.026558E-06 

37 1.000002 3.928141E-06 2.66668 2.026558E-06 

 

 
 

Fig. 4. Error bound of problem 4 by NCGM 

 

Table 5. Solution of problem 5 by NCGM 

 
No. of 

iterations 
x  u  ),( uxF  

 

Error bound 

   || kE  

 1 1.011796 4.084E-04 0.102373 1.346319E-02 

2 0.974485 

 

4.27E-7 0.197335 1.3985E-2 

3 0.969326 9.77E-12 0.291295 1.13E-4 

4 0.947307 3.927E-15 0.381034 5.838E-3 

5 0.890482 1.068E-17 0.460329 0.015985 

6 0.878034 1.652E-21 0.537424 1.239899E-2 

7 0.825365 4.942E-24 0.605546 0.004888 

8 0.775855 1.221E-26 0.665741 3.398E-03 

9 0.729315 3.32E-29 0.718931 6.397E-03 

10 0.658226 2.346E-31 0.762258 1.4801E-03 
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Fig. 5. Error bound of problem 5 by NCGM 
 

Table 6. Solution of problem 6 by NCGM 
 

No. of 

iterations 
x  u  ),( uxF  Error bound 

   || kE  

 1 1 -2 4 0.702651 

2 0.000000001 -1.330793 0.784119 3.344284E-02 

3 0.000000001 -1.306902 0.729310 9.552149E-03 

4 0.000000001 -1.300079 0.714199 2.728966E-03 

5 0.000000001 -1.298130 0.709926 7.802653E-04 

6 0.000000001 -1.297573 0.708709 2.237162E-04 

7 0.000000001 -1.297415 0.708362 6.476587E-05 

8 0.000000001 -1.297369 0.708263 1.936964E-05 

9 0.000000001 -1.297356 0.708235 6.404475E-06 

10 0.000000001 -1.297353 0.708227 2.701624E-06 

11 0.000000001 -1.297353 0.708227 2.689312E-06 

12 0.000000001 -1.297352 0.708227 2.676999E-06 

 

 
 

Fig. 6. Error bound of problem 6 by NCGM 
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6 Conclusion 

 
The new conjugate gradient method has a natural connection with the Lanczos process for solving 

systems of equations. Also, it satisfies the traditional criterion for ensuring that a numerical 

method is stable. Therefore, the NCGM is efficient, accurate, reliable and absolutely stable. 

 

Competing Interests 

 
Authors have declared that no competing interests exist. 

 

References  

 
[1] Nwaeze E, Bamigbola OM. A new conjugate gradient method for solving  unconstrained 

optimization problems. International Journal of Advanced Engineering Sciences and 

Technologies. 2011;22(2):187-192.  

 
[2] Paige CC. Accuracy and effectiveness of the Lanczos algorithm for the symmetric 

eigenproblem. Journal of Linear Algebra Appications. 1980;34:235-258. 

 

[3] Lambert JD. Computational methods in ordinary differential equations. John Wiley and 

sons Chichester, New York; 1973.  

 
[4] Gene HG, Charles FL. Matrix Computations. John Hopkins University Press, Baltimore, 

Maryland, USA; 1983. 

 

[5] Greenbaum A. Behavior of slightly perturbed Lanczos and conjugate gradient recurrences. 

Journal of Linear Algebra Applications. 1989;113:7-63 

 
[6] Greenbaun A, Strakos Z. Predicting the behavior of finite precision Lanczos and conjugate 

gradient computations. SIAM J. Matrix Analysis and Application. 1992;13(1):121-137. 

 
[7] Paige CC. Computational variants of the Lanczos method for eigenproblem. Journal of  Inst. 

Maths, Applications. 1972;10:373-381. 

 

[8] Paige CC. Error analysis of the Lanczos algorithm for tridiagonalizing a  symmetric matrix. 

Journal of Inst. Maths. Applcations. 1976;18:341-349. 

 

[9] Dai YH, Yuan Y. A nonlinear conjugate gradient method with a strong global convergence 

property. SIAM Journal of Optimization. Optim. 1999;10:177-182. 

 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science 4(24), 3508-3522, 2014 

 

 

3522 
 

[10] Hageman LA, Young DM. Applied iterative methods. Academic, New York; 1981. 

 

[11] Adorio PE. MVF-Multivariate Test Functions Library in C for unconstrained Global 

Optimization. 2005;1-13. 

_______________________________________________________________________________ 
© 2014 Emmanuel and Nlia; This is an Open Access article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original work is properly cited. 
 

 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
www.sciencedomain.org/review-history.php?iid=699&id=6&aid=6428 


