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ABSTRACT

We study the direct correlation function (DCF) of a classical fluid of non-spherical
molecules. The components of the fluid are hard spherocylinder (SC) molecules. The
required homogeneous DCF is obtained by solving Orenstein-Zernike (OZ) integral
equation numerically, using the Percus-Yevich (PY) approximation and the procedure
proposed by Ram and co-workers. We also obtained the closest approach between two
spherocylinders by using two different methods: first, extending the algorithm proposed by
Vega and Lago by introducing a new geometry and second, use the finite element
procedure. Results are in agreement in two methods. The calculation is performed for
various values of packing fractions of the fluid and for the aspect ratios L/D=5.0,10.0. The
coefficient expansions of DCF are obtained. The results are in agreement with the other
recent works.
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1. INTRODUCTION

The problem is the prediction of the physical properties of simple and multi-component
molecular fluids based on the information about molecular shapes and intermolecular
interactions. Considerable progress has been made over the last two decades in
understanding the behavior of these fluids at the molecular level by considering simplified
models.

For these fluids we can consider models in which molecules are treated as hard particles
with a given shape [1]. The main reason to study systems of hard convex bodies is that they
provide us with simple reference systems which are used to investigate more realistic
systems such as liquid crystals [2].

Among simple geometric forms, spherocylinder seems to approximate best the shape of the
most nematgenic molecules. For this reason, a fluid of rigid SC is a useful model for
investigating the fundamental nature of the nematic-isotropic phase transition in liquid
crystals.

Recently, there have been many investigations on the structural properties of interface and
confined molecular fluids using the liquid state such as integral equation [3,4], density
functional theory [5-8] and computer simulations [9-12]. Since the integral equation theory
has been found to be quite successful in describing molecular fluids, this theory is used to
study this kind of fluids.

The direct correlation function (DCF) plays an important role in describing thermodynamical
properties and the structure of simple fluids[13-15], molecular fluids [16-18] and
multicomponent ones [19-22]. The DCF can be used to calculate the equation of state [23-
25], free energy [26], phase transition [27,28], elastic constants [29-33], etc.

In our work, we consider a system composed of hard SC particles and obtain the DCF of this
system. We use the Ornstein-Zernike (OZ) integral equation [34] by the Percus-Yevick (PY)
approximation [35] to study this system.

This article is organized as follows: in Sec.2, we introduce the SC model and explain how to
find the DCF of this model by OZ equation, in Sec.3 the methods of calculating the closest
approach between SC molecules are described. In Sec.4, we report and discuss the results
and finally in Sec.5 our conclusions are summarized.

2. DCF OF SC

DCEF of spherical fluids is only dependent on distance between the centers of the molecules.
In non spherical fluids, in addition to the distance, the orientation of the molecules is also
effective. For solving this problem, expansion of the DCF according to spherical harmonics is
suggested [4]. Because the spherical harmonics include polar and azimuthal angles, that are
useful tools to describe the orientation axis of each molecule.

In the SC model, system formed by cylinders of length L and diameter D terminating in
hemispheres at the two bases. These spherocylinders interact according to the potential:
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(1)

where 2. =(0,,¢, )is describes the orientation of particle i and 7 is a vector along the

line connecting the centers of the two particles and G(?,Q],Qz)is the closest approach
between the segments constituting the axis of the cylinder.

The DCF of fluid with non-spherical molecules can be defined through the OZ equation [28]

h(r,,Q,,rZ,QZ)=c(r,,g,,rz,gz)+ﬁjd(z}jdrjc(r,,g,,r},gg)h(r3,g3,rz,gz) )

where 7, is the position of the center of mass and p shows the number density of the

molecules. The symbols h and c are the well-known total and direct correlation functions. To
solve OZ equation, we first introduce the expansion of DCF. There are two common choices
for this expansion. In one expansion, the molecular orientations are referred to an

intermolecular reference frame in which the polar axis is along the intermolecular vector 7, ,

body frame (BF). In the other one, the molecular orientations are defined in a space-fixed or
laboratory frame (LF) of reference. We expand the angular dependence of the correlation
functions, h or c, using orthogonal basis set of harmonics.

Expansions in BF is

o(F,2,2,)= Y (I, 1,,mr )Y (2, )Y, (2,) 3)

1;.0,,m

and in LF can be defined by

o(F,02,,2,)=Yc(l,1,.1:r)$, , (2,02,02,). )

1,051

Where [}r is the unit vector along#, c(l,,l,,m;r)andc(l,,l,,l;r)are the expansion

coefficients in body and laboratory frames. ¢,l'17’l(_(ﬁ21,.(ﬁ22,_(ﬁ2},) is rotational invariant
given by

$,,,(2,62,2,)= Y C(LL,Lm,my,m)Y" ()Y (2,)Y" (2,) ()

my,my,m

Where C(1,,1,,l;m,m,m)is a Clebsch-Gordan coefficient and Y," is the spherical

harmonics, and * indicates the complex conjugate. In BF expansion, the z-axis of the
coordinate system was chosen along the axis connecting the two molecules that are
correlated. Therefore, we only need to deal with one index m. To find the direct correlation
function the following procedure is required:
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(1) Guess an initial value forc(1,,l,,m;r).
(2) Calculate the expansion coefficient in LF by using the first step

4
cl,,1,,1;r)= Z ﬁcﬂf A, mir)C(1,,1,,1; m—m,0)
(3) Use Fourier-Hankel transformation to obtain the coefficients in the Fourier space
c(l,1,.1;k)=4r(=i) [drr” j,(kr Je(1,,1,,1;:7)
0
(4) The coefficients 0(11 A ,l;k)are used to obtain

21+ 1
4

e(1,,1,,1:k)C(1,,1,,1;m~m,0)

cl,,1,,m k)= Z,:

(6)

()

(8)

These three equations transform a two particle correlation function from r frame in real space
into a function in k space; within the complete set of the spherical harmonics we can

transform the OZ equation as
h(l, 1, m k)= c(z,,zz,m,-k)+fzc(z,,z,m;k)h(z,zz,m,-k)
T
This can be written in matrix form for each m and k value

h(m:k)=c(m;:k)+ 4ﬁ c(m;k )h(m;k)
L ¢ _cmik)h

where ¢ and ﬁ are symmetry matrices with indices |4 and I,.

Here we introduce an auxiliary function y(m,k )

X(m;k)zﬁ(m;k)—g(m;k)

(5) The OZ equation is written as

X PV I AP
Z(m,k)_m{z 4”£(m,k)} le(m; k)]

and it is solved for y(/,,l,,m; k).

9)

(10)

(11)

(12)
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(6) Converting y(1,,1,,m; k)to y(1,,1,,l;k ) yields

w(l,,1,,1 k)= Z —y(l,,lz,m k)C(1,,1,,l;m~m,0) (13)
(7) By using the inverse Fourier-Hankel transform we can get y(1,,.,,[;r)

y(l,,0,,1r)=

Ji(kr)y(l,,1,,01k) (14)

(8) These expansions are used to obtain y(1,,l,,m;r)

21+ 1

y(ll,lz,m,‘l’) z

y(ll,12,l;r)C(lI,IZ,l;m,—m,O) (15)

(9) To solve the OZ equation, we require an appropriate closure relation. Here we apply the
PY closure relation [29]

co(12)=f(1.2)ly(12)+1] (16)
where f(1,2) is the Mayer function and is defined by
f(12)=exp(=pu(l2))-1 (17)

and for the pair potential energy of interaction between particles, which defined in Eq.(1) is
(18)

f(12)=[(7.92,02,)= {

(10) We can determine ¢(1,,[,,m;r ) with the help of the PY equation

(20 +1)(21+1)( 21 +1)(215+1)
(20, +1)(21,+1)

1

c(l,l,,mr)=—
(it mir) =3
0l

xC(1,10,1,:0,0,0 )C(1,10,1,:0,0,0)S C(L, 1L ;' m",m) (19)

) CL I L= = = ) £ (1L’ (1L m" )+ 47515

Where f(1,,l,,m;r )is the Mayer expansion coefficient and given by
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S L,mir) = [d2,[d2, [ (r,2,02,)Y"(2,)Y" (2,) (20)

With these new values ofc(/,,l,,m;r ), we return to step (2) and repeat the next steps

again. This iteration is continued until a required convergency is achieved. By using these
coefficients, we can obtain the DCF of SC fluid.

3. CLOSEST APPROACH BETWEEN HARD SC MOLECULES

In molecular liquid theory calculating the closest approach between two molecules is very
important. In order to calculate the DCF of a fluid it is necessary to calculate the closet
approach between the molecules. Because of the significant we calculate the closest
approach of two SCs by using two different methods and analyze them in comparison.

In the first method we use a fast algorithm proposed by Vega and Lago [36]. They actually
applied their method for calculating the closest approach between two rods. We extend this
procedure to find the closest approach between two SCs. The closest approach between
two SCs can be calculated by subtracting the half of the diameter of each SC from the
shortest distance between rods obtained by the method mentioned.

In the second method we use the finite element procedure to find the closest approach. In
this method, the main axis of the SCs (cylinders axis) are divided into equal parts.

With having orientation ([}1) diameter, length of SC and 7,, the vector that connects the

centers of SCs (Fig. 1), the coordinate of the begin and end of the main axis of the cylinder
can be determined and given by

- L -~ - _ L -
A:r,2+71.(2, ;B = 12—7’[21 (21)
where (.@1) and 7,, are
Q, =sinb, cos @i +sinb, sing, j + cos Hllg (22)
7, =r(sin@cosgi +sin@sin @] + cosOk) (23)

To divide this segment (axis of cylinder) into n equal parts from the following equation is
used

7 :(i—1)§+(n—i+1)21

i

(24)
n

where Fl is the coordinate of the i” node.
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e

Fig. 1. Coordinates and orientation of two SCs

The main axis of the other cylinder is divided into m equal parts similarly. Now, the distances
between the pairs of points listed from each cylinder which is the combination of 2 from m+n
are calculated. The minimum value from the calculated distances is chosen. Finally, we
subtract this value from the half diameter of the each SC that value is the closest approach
between SCs.

Gz[mm(\/(xi—xj)2+(yi—yj)2+(Z[—Zj)2)}—D (25)

These methods are more general and can also be used for the mixtures (Fig. 2).

2N

'/
cij /’ L.

Fig. 2. Mixtures of SCs molecules

After all the studies, all in all, we found out that the finite element approach is both fast and
easier to use with an adoptable completely appropriate error.
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4. RESULTS AND DISCUSSION

We solve the OZ integral equation numerically to find the DCF of hard SC fluid. For
calculating the DCF of the fluid, it is required to calculate the closet approach between the
molecules, therefore, we calculate the closest approach of two SCs by using two different
methods which described. According to the results shown in the Table 1, for the aspect ratio,
L/D=5.0, these methods are in good agreement. Here L and D are the length and diameter
of SC, respectively. All values are randomly selected.

Table 1. Calculated closest approach of SCs with L/D=5.0, the angles are in radian

r o 4 2 J2] Vega & Finite
! P 2 ¢ Lago Element
Method Method

28591 1.2419 51896 2.7181 2.6025 2.4872 5.1296 O 0

42640 13555 1.8970 1.3601 1.5154 1.9937 2.3071 0.2196 0.2177
11.7971 25181 1.2959 0.6010 4.5526 3.0588 4.4264 6.5927 6.5851
14388 23084 3.1228 2.7033 1.6170 0.8722 1.8106 0.1033 0.1016
55697 3.0763 2.9350 0.6200 3.2049 0.6594 3.6442 2.9350 2.5141
3.7358 1.3938 5.2771 3.0850 2.5906 1.0920 4.1983 2.2485 2.5141

6 0 0 0 0 0 0 0 0
2.8719 1.5483 6.0874 25982 0.8067 2.6460 4.9604 1.2461 1.2437
3.7071 O 0 0.785 1.57 0.785 1.57 0 0

In Table 11, Q, = ©@,,4,) and 2 =(0 ,p ) are the distance between the centers of

SCs, orientation of k" molecule and orientation of the vector which connects the center of
SCs respectively.

Now, we can calculate the Mayer function with Eq. (18). The packing fraction of SC can be
given by

4 D D,
77—/?[37[(7) }{”(?) L} (26)

In Fig. 3, the selected DCF expansion coefficients for packing fraction 77 = 0.5 with aspect
ratio L/D=5.0 are plotted.
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Fig. 3. Selected expansion coefficients of the DCF of hard SCs as a function of the

-
reduced distance, 7* = B, for 71=0.5

In Fig. 4 the selected DCF expansion coefficients of DCF for packing fraction 77 = 0.441
with aspect ratio L/D=5.0 are plotted.
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Fig. 4. Selected expansion coefficients of the DCF of hard SCs as a function of the

r
reduced distance, 7* = B, for 1 =0.441

In the following, the expansion coefficients are compared with computer simulation [10] in
Fig. 5. These coefficients are calculated in LF for aspect ratio L/ID=10 and 77 =0.1592 The

obtained expansion coefficients of the DCF using the PY integral equation are in good
agreement with the coefficients provided by computer simulation.

302



Physical Review & Research International, 3(4): 293-305, 2013

C44l:l

Fig. 5. Selected expansion coefficients of the DCF as a function of reduced distance
r
r¥ = Ny for 77 =0.1592 and L/D=10.0 in LF. The solid and dotted curves are due to
our results and simulation [10], respectively

5. CONCLUSION

For studying a system containing spherical and non-spherical members knowing the DCF is
required. We consider a system composed of hard SC particles and obtain the DCF of this
package. We use the integral equation by the PY closure. First, we should define how to
calculate closest approach between two molecules and then compare these methods. As
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shown in Table 1 these methods are in fairly agreement. With calculating closest approach,
the expansion coefficients of DCF are obtained. These coefficients are plotted for different
packing fraction and aspect ratio. Finally, we compared the expansion coefficients with
computer simulation, which are in good agreement.
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