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Abstract
Recent advances in classical reinforcement learning (RL) and quantum computation point to a
promising direction for performing RL on a quantum computer. However, potential applications
in quantum RL are limited by the number of qubits available in modern quantum devices. Here,
we present two frameworks for deep quantum RL tasks using gradient-free evolutionary
optimization. First, we apply the amplitude encoding scheme to the Cart-Pole problem, where we
demonstrate the quantum advantage of parameter saving using amplitude encoding. Second, we
propose a hybrid framework where the quantum RL agents are equipped with a hybrid tensor
network-variational quantum circuit (TN-VQC) architecture to handle inputs of dimensions
exceeding the number of qubits. This allows us to perform quantum RL in the MiniGrid
environment with 147-dimensional inputs. The hybrid TN-VQC architecture provides a natural
way to perform efficient compression of the input dimension, enabling further quantum RL
applications on noisy intermediate-scale quantum devices.

1. Introduction

Recently available quantum computers (QCs) [1–3], which can potentially have significant speedup over
classical computers on certain problems [4–7], show great promise in the application of machine learning
tasks. However, these so-called noisy intermediate-scale quantum (NISQ) devices [8] lack quantum error
correcting capabilities [5, 9, 10] and cannot perform quantum algorithms with a large number of qubits and
a deep circuit. These limitations make the development of near-term quantum algorithms highly non-trivial.

Numerous efforts have been made to utilize these NISQ resources, and one of the notable achievements is
variational quantum algorithms (VQAs) [11, 12]. In such a framework, certain parts of a given computational
task that can leverage the strength of quantum physics will be put on a QC, while the rest remains on a
classical computer. The outputs from the QC will be channeled into the classical computer, and a predefined
algorithm will determine how to adjust the parameters of the quantum circuit on the QC.

VQAs have been applied in various machine learning tasks, such as classification and function
approximation [13]. It has been shown that VQA may have extraordinary expressive power [14] and can be
employed to solve complex machine learning (ML) problems. Classical reinforcement learning (RL) [15] has
demonstrated remarkable ability in achieving better than human performance on video games [16–19], and
the game of Go [20, 21]. Recently, it has also been applied to quantum physics research, such as quantum
control [22–24], quantum error correction [25–27] and quantum experiment design [28]. How to replicate
the successes of classical RL by incorporating VQA into the RL model, in particular, with environments of
large dimensions, remains an open question.
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Existing quantum RL schemes rely solely on gradient-based methods to optimize the policy and/or value
functions [29–33]. On the other hand, evolutionary optimization has been shown to reach similar or even
superior performance compared to gradient-based methods on certain difficult RL problems [34]. To the
best of our knowledge, the application of evolutionary algorithms to quantum RL optimization has not been
studied extensively. Another hurdle of quantum RL is that current quantum devices have only a few qubits,
thus preventing the potential use of cases of environments with large dimensions. Here, we present an
evolutionary and gradient-free method to optimize the quantum circuit parameters for RL agents. We show
that this method can successfully train a quantum deep RL model to achieve a state-of-the-art result on the
Cart-Pole problem with only a few parameters, demonstrating a potential quantum advantage. In addition,
we demonstrate that the evolutionary method can be used to optimize models combining tensor networks
(TNs) and variational quantum circuits (VQCs) in an end-to-end manner, opening up more opportunities
for the application of quantum RL with NISQ devices.

In this work, we present an evolutionary deep quantum RL framework to demonstrate potential
quantum advantage. We contribute the following:

• Demonstrate the quantum advantage of parameter saving via amplitude encoding. In the Cart-Pole envir-
onment, we successfully use the amplitude encoding to encode a 4D input vector into a two-qubit system.
• Demonstrate the capabilities of the hybrid TN-VQC architecture in quantum RL scenarios. The hybrid
architecture can efficiently compress the large dimensional input into a small representation that can be
processed with an NISQ device.

The paper is organized as follows. In section 2, we introduce the basics of RL. In section 3, we describe
the testing environments used in this work. In section 4, we introduce the basics of VQCs. Section 5 describes
the quantum circuit architecture for the Cart-Pole problem. Section 6 introduces TN methods and describes
the hybrid TN-VQC architecture for the MiniGrid problem. Section 7 explains the evolutionary method
used to optimize quantum circuit parameters. The performance of the proposed models is shown in
section 8, followed by further discussions in section 9. Finally, we conclude our work in section 10.

2. Reinforcement learning

RL is a machine learning paradigm where a given goal is to be achieved through an agent interacting with an
environment, E , over a sequence of discrete time steps [15]. At each time step, t, the agent observes a state, st,
and subsequently selects an action, at, from a set of possible actionsA according to its current policy, π. The
policy is a mapping from a certain state, st, to the probability of selecting an action fromA. After performing
the action, at , the agent receives a scalar reward, rt, and the state of the next time step, st+1. For episodic tasks,
the process proceeds over a number of time steps until the agent reaches the terminal state. An episode
includes all the states that the agent experienced throughout the aforementioned process, from a randomly
selected initial state to the terminal state. Along each state, st, during the training process, the agent’s overall
goal is to maximize the expected return, which is quantified by the value function at state s under policy π,
Vπ(s) = E [Rt|st = s], where Rt =

∑T
t ′=t γ

t ′−trt ′ is the return, together with the total discounted reward from
time step t. The discount factor γ ∈ (0,1] allows the investigator to control the influence of future rewards on
the agent’s decision making. A large discount rate γ forces the agent to take into account the distant future,
whereas a small γ allows the agent to focus more on immediate rewards and ignore future rewards beyond a
few time steps. The value function can be expressed as Vπ(s) =

∑
a∈AQπ(s,a)π(a|s), where the action-value

function or Q-value function Qπ(s,a) = E[Rt|st = s,a] is the expected return of choosing an action a ∈ A in
state s according to the policy π. Selecting the best policy among all possible policies yields the maximal
action-value, given by the optimal action-value function Q∗(s,a) =maxπQπ(s,a), which in turn produces
the maximal expected return. In this work, we construct a hybrid quantum–classical model consisting of TNs
and VQCs to approximate the functionality of the Q-value function. The idea is that given a state s, the
model will output an array of values corresponding to the relative goodness of each action. Then, the action
with the highest values will be selected.

3. Testing environments

Here, we briefly describe the two testing environments in our experiments: Cart-Pole and MiniGrid [35].

3.1. Cart-Pole
Cart-Pole is a common testing environment for benchmarking simple RL models and has been a standard
example in the OpenAI Gym [36] (see figure 1). In this environment, a pole is attached by a fixed joint to a
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Figure 1. Cart-Pole environment from OpenAI Gym.

Figure 2. Empty environment from MiniGrid. We consider three environments from MiniGrid in this work. In each
environment, there are also walls which span 1 unit on each side (not shown in the figure). (a), (b) and (c) represent the
MiniGrid-Empty-5x5-v0, MiniGrid-Empty-6x6-v0 and MiniGrid-Empty-8x8-v0 environments, respectively.

cart moving horizontally along a frictionless track. The pendulum initially stays upright, and the goal is to
keep it as close to the initial state as possible by pushing the cart leftwards and rightwards. The RL agent
learns to output the appropriate action according to the observation it receives at each time step.

The Cart-Pole environment mapping is as follows:

• Observation: a 4D vector st comprising values of the cart position, cart velocity, pole angle, and pole velocity
at the tip.
• Action: there are two actions+1 and −1 in the action space, corresponding to pushing the cart rightwards
and leftwards, respectively.
• Reward: a reward of +1 is given for every time step where the pole remains close to being upright. An
episode terminates if the pole is angled over 15 degrees from vertical or the cart moves more than 2.4 units
away from the center.

3.2. MiniGrid
MiniGrid [35] is a more complicated environment with a much larger observation input for the RL agent. In
this environment, the RL agent receives a 7× 7× 3= 147 dimensional vector from observation and
accordingly has to determine the action from the action spaceA, which contains a total of six possibilities.
Note that the 147-dimensional vector is a compact and efficient encoding of the environment, not the actual
pixels. As shown in figure 2, the agent (shown in a red triangle) is expected to find the shortest path from the
starting point to the goal (shown in green).

The MiniGrid environment mapping is as follows:

• Observation:a 147 dimensional vector st .
• Action: there are six actions 0, . . . ,5 inA, each corresponding to the following:

∗ Turn left
∗ Turn right
∗ Move forwards
∗ Pick up an object
∗ Drop the object being carried
∗ Toggle (open doors, interact with objects)

• Reward: a reward of 1 is given when the agent reaches the goal. A penalty is subtracted from the reward
according to the formula:

1− 0.9× (number of steps/max steps allowed). (1)
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Figure 3. Generic architecture for VQCs. U(x) is the quantum circuit block for encoding the (classical) input data x into a
quantum state and V(θ) is the variational block with learnable parameters θ to be optimized via gradient-based or gradient-free
methods. Quantum measurements are performed over some or all of the qubits.

Themax steps allowed is defined to be 4× n× nwhere n is the grid size [35]. In the present study, we consider
n= 5,6,8. This reward scheme is challenging since it is sparse, i.e. the agent will not receive any reward along
the steps until it reaches the goal and therefore most of the actions elicit no immediate response from the
environment.

4. Variational quantum circuits

VQCs are quantum circuits with parameters tunable via iterative optimizations, which are done on a classical
computer with either gradient-based [37, 38] or gradient-free algorithms [39]. The architecture of a generic
VQC is illustrated in figure 3. The U(x) block serves as the state preparation part, which encodes the classical
data x into the circuit quantum states and is not subject to optimization, whereas the V(θ) block represents
the variational part containing trainable parameters θ, which in this study are optimized through
evolutionary methods. The output information is obtained by measuring a subset or all of the qubits and
thereby retrieve a classical bit string.

One of the notable advantages of these circuits is that they are resistant to quantum noise [40–42],
potentially favorable for NISQ devices. In the field of quantum machine learning (QML), applications of
VQCs to standard machine learning tasks have achieved various degrees of success. Prominent examples
include function approximation [13, 43–45], classification [13, 14, 46–63], generative modeling [64–68],
deep RL [29–33, 69–72], sequence modeling [43, 73–76], speech recognition [77], metric and embedding
learning [78, 79], transfer learning [50, 80] and federated learning [77, 81, 82]. Furthermore, it is shown that
the VQCs have more expressive power than classical neural networks [83–85]. Whether VQCs can perform
better than their classical counterparts with an equal or fewer number of parameters is therefore an
interesting subject to explore.

5. Quantum architecture for the Cart-Pole problem

In this problem, the observation input is 4D, which can be readily encoded into a quantum circuit. The
quantum circuit for the Cart-Pole experiment is shown in figure 4. In this two-qubit architecture, we load the
4D observation input with amplitude encoding. U(x) represents the quantum routine for amplitude
encoding, of which possible implementations are described in [86, 87]. Here, we repeat the variational circuit
block (shown in a grouped box) four times to increase the number of parameters and thereby the expressive
power. In the measurement part, since there are only two possible actions in the Cart-Pole problem, we
simply evaluate the Z expectation values of the two qubits individually. The measurement output, i.e. the
expectation values, are then further processed by adding a classical bias of the same dimension (2).

5.1. Amplitude encoding
As the observation space of the Cart-Pole environment is continuous, it is impossible to use the
computational basis encoding (which is for discrete space, as used in the previous work [29]) to encode the
input state. For this task, we employ the amplitude encoding method to transform the observation into the
amplitude of a quantum state. Amplitude encoding is a method to encode a vector (α0, . . . ,α2N−1) into an
N-qubit quantum state |Ψ⟩= α0|00 · · ·0⟩+ · · ·+α2N−1|11 · · ·1⟩ where the αi are real numbers and the
vector (α0, . . . ,α2N−1) is normalized. A potential advantage is that for anm-dimensional vector, it requires
only log2(m) qubits to encode the data. The details of this operation are described in appendix A.2. The full
quantum circuit simulation is performed with the package PennyLane.
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Figure 4. Quantum circuit architecture for the Cart-Pole problem. U(x) is the quantum routine for amplitude encoding and the
grouped box is the variational circuit block with tunable parameters αi, βi, γ i. In the evolutionary quantum RL architecture for
the Cart-Pole problem, the grouped box repeats four times. Total number of parameters is 2× 3× 4+ 2= 26 where the extra
two parameters are the bias added after the measurement.

5.2. Action selection
The selection of the next action is similar to that used in the quantum deep Q-learning in [29]. Specifically,
the output from the quantum circuit after the classical post-processing of this two-qubit system is a
two-tuple [a,b]. If a is the maximum between the two values, then the corresponding action is−1. On the
other hand, if the maximum is b, then the action is+1.

6. Hybrid TN-VQC architecture for the MiniGrid problem

One of the key challenges in the NISQ era is that quantum-computing machines are typically equipped with
a limited number of qubits and can only execute quantum algorithms with a small circuit depth. To process
data, with input dimensions exceeding the number of available qubits, it is necessary to apply certain kinds of
dimensional reduction techniques to first compress the input data. For example, in [50], the authors applied
a classical pre-trained convolution neural network to reduce the input dimension and then used a small VQC
model to classify the images. However, the pre-trained model is already sufficiently powerful, and it is not
clear whether the VQC plays a critical role in the whole process.

On the other hand, in [55], the authors explored the possibilities of using a TN for feature extraction and
training the TN-VQC hybrid model in an end-to-end fashion. It has been shown that this hybrid TN-VQC
architecture succeeds in classification tasks. However, to the best of our knowledge, the potential of this
architecture has not yet been explored in RL schemes with complex environments. In the MiniGrid, the
observation is a 147-dimensional vector and is impossible to be directly processed on current NISQ devices.
Here, we propose a hybrid TN-VQC agent architecture (see figure 5) so that an efficient dimensional
reduction can be achieved.

6.1. Tensor network
TN is a technique originally developed in the field of quantum many-body physics [88–94] for efficiently
expressing the quantum wave function |Ψ⟩. MPS, among others, is a type of 1D TN that decomposes a large
tensor into a series of matrices. A general N-qubit quantum state can be written as,

|Ψ⟩=
∑
i1

∑
i2

· · ·
∑
iN

Ti1i2···iN |i1⟩⊗ |i2⟩⊗ · · · ⊗ |iN⟩ (2)

where Ti1i2···iN is the amplitude of each basis state |i1⟩⊗ |i2⟩⊗ · · · ⊗ |iN⟩. As the number of entries of Ti1i2···iN
grows exponentially with N, it is extremely difficult to store and process quantum states on a classical
computer when the number of qubits becomes large. However, with MPS, an efficient representation that
approximately decomposes Ti1i2···iN into a product of matrices [95]:

Ti1i2···iN =
∑
α1

∑
α2

· · ·
∑
αN

A1
i1α1

A2
α1i2α2

A3
α2i2α3

· · ·AN
αN−1iN , (3)

where the matrices A are indexed from 1 to N and αj represent the virtual indices, one can largely reduce the
space where |Ψ⟩ resides. Each virtual index αj has a dimensionm called bond dimension and serves as a
tunable hyperparameter in the MPS approximation. It is known that for a sufficiently largem, an MPS can
represent any tensor [96]. In machine learning applications, the bond dimensionm is typically used to tune
the number of trainable parameters and thereby the expressive power of the MPS. Figure 6 shows the
illustration of tensors and MPS. We refer to [97] for an in-depth introduction to TNs.

Since the pioneering work of [98], great effort has been made to apply TN in the field of machine
learning. TN-based methods have been utilized for applications, such as classification [98–104], generative
modeling [105–107] and sequence modeling [108]. It has also been shown that TN-based architectures have
deep connections to the building of QML models [109]. Specifically, we show that it is possible to encode a
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Figure 5. Hybrid TN-VQC agent for the MiniGrid environment. In this framework, the observation or state, which is of a
dimension exceeding the capabilities of available QCs, is first compressed into a vector via the trainable matrix product states
(MPS). Compressed representation is then encoded into the VQC for further training. Action is chosen based on the output of the
VQC. In this work, we train this TN-VQC model in an end-to-end fashion.

Figure 6. Graphical notation of tensors and TNs. Graphical tensor notation of (a) a vector, (b) a matrix, (c) a rank-3 tensor and
(d) an MPS. We follow the Einstein convention that repeated indices, represented as closed legs in the diagram, are summed over.

quantum-inspired TN architecture, such as MPS, into a quantum circuit with single- and two-qubit gates
[110].

6.2. MPS operation
In the TN-VQC architecture in this study, we use an MPS-based feature extractor as the TN part to reduce
the input dimension. For an MPS to process an input vector v, a feature map Φ(v) is needed. The most
general form is:

v→ |Φ(v)⟩= ϕ(v1)⊗ϕ(v2)⊗ ·· ·⊗ϕ(vN), (4)

where each ϕ is a d-dimensional feature map, mapping each vj into a d-dimensional vector. The value d is
known as the local dimension. In this work, we choose d= 2 and the feature map ϕ(vj) to be:

ϕ(vj) =

[
1− vj
vj

]
. (5)

The input vector v, a state/observation perceived by the agent, is therefore encoded into a tensor product
state in the following way:

v→ |Φ(v)⟩=
[

1− v1
v1

]
⊗
[

1− v2
v2

]
⊗ ·· ·⊗

[
1− vN
vN

]
, (6)

6
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Figure 7. VQC architecture for the action selection. VQC component in our hybrid TN-VQC architecture includes three parts.
First one is the encoding part, comprising Hadamard gates H and single-qubit rotation gates Ry(arctan(xi)) and Rz(arctan(x2i )).
Hadamard gateH serves to generate an unbiased initial state as described in equation (A1), and the two rotation gates are for state
preparation, where the input parameters xi are the compressed representation generated by the MPS component. Second one is
the variational part, comprising CNOT gates, which entangle the quantum states of the qubits, and general rotation gates
R(α,β,γ), where the parameters αi, βi and γ i are to be optimized via the learning process. Final one is themeasurement part,
which gives the Pauli-Z expectation values through multiple runs of the quantum circuit, where the quantum measurements are
performed on the first k qubits, with k being the number of actions. Retrieved values (logits) subsequently undergo classical
processing, such as the softmax function to yield the probability of each possible action.

which is then contracted with the trainable MPS and becomes a vector:

f(v) =
∑
i1

∑
i2

· · ·
∑
iN

Ti1i2...iNϕ(v1)i1 ϕ(v2)i2 · · ·ϕ(vN)iN , (7)

where i1, i2, . . . , iN are in {0,1} and Ti1i2...iN is defined as in equation (3) but with an additional rank-3 tensor
in the middle with an open leg representing the 8D output, i.e. the compressed representation, as can be seen
schematically in figure 5. In figure 5, the feature-mapped input and the trainable MPS are shown in red and
blue circles (nodes), respectively. Since the observation input in MiniGrid is a 147-dimensional vector, there
are in total 147 input nodes and (147+ 1)MPS nodes.

6.3. VQC processing
For the VQC part, we adopt the variational encoding method to encode our compressed representations into
quantum states. The basic idea of this encoding method is that the values to be encoded can be used as
quantum rotation (e.g. Ry and Rz) angles directly or after some simple transformation. This method is
generally easy to implement on an NISQ device. The details of this operation are described in appendix A.1.

The encoded state is then processed with the variational part with optimizable parameters, as shown in
the dashed box in figure 7. The box can be repeated multiple times to increase the number of parameters and
thus the expressive power of the model. For the MiniGrid problem, we use only one block since the
performance does not increase significantly with more than one variational block. In the final part of the
model, the Pauli-Z expectation values are retrieved through multiple runs (shots) of the circuit. Only the
first six qubits are measured. These values are then processed with a softmax function to evaluate the
probabilities of each action.

6.4. Action selection
The selection of the next action is similar to that used in the quantum deep Q-learning in [29]. Specifically,
the output from the quantum circuit after the classical post-processing of this eight-qubit system is a
six-tuple [a,b, c,d,e, f ]. If a/b/c/d/e/f is the maximum among the six values, then the corresponding action
is 0/1/2/3/4/5.

7. Quantum circuit evolution

Here, we elucidate our quantum circuit evolution algorithm inspired by [34]. The essential concept of this
approach is to first generate a population of agents with random parameters and then make them evolve

7
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through a number of generations with a certain mutation rate. In each generation, the fittest agents will be
selected to produce the next generation. The details of each step are explained below. See appendix B for the
pseudocode of the whole quantum circuit evolution algorithm.

7.1. Initialization
We first initialize the population P of N agents with each of them given randomly generated initial
parameters θ, which are sampled from the normal distributionN (0, I) and multiplied by a factor of 0.01.
The multiplication factor 0.01 serves to set the parameters around zero, thereby rendering the training
process more stable.

7.2. Running the agents
For each generation, all of the agents’ fitness is evaluated as follows. Each agent plays the game for R1 times
and the average score, which represents the fitness, is calculated by Savgi = 1

R1

∑R1

r=1 Si,r where Si,r is the score
of the rth trial obtained by the ith agent. The score is simply the sum of rewards within an episode. Taking
into account the fitness of all the agents, we then select the top T agents according to their average scores
(fitness) Savgi . The resulting group is called the parents and used to generate the next generation.

7.3. Mutation and the next generation
The N children of the next generation are generated via two separate procedures. In the first part, we
generate a group of N − 1 children, each of which is a single agent randomly selected from the parent group
and slightly mutated. Specifically, the parameter vector θ of this parent agent undergoes the following
mutation operation: θ← θ+σϵ, where σ is themutation power and ε the Gaussian noise sampled from the
normal distributionN (0, I). This is distinct from the commonly used gradient-based methods in that the
optimization direction is randomly chosen, a feature that can potentially provide the advantage of
circumventing the local optima and efficiently optimizing the parameters in an environment with sparse
rewards [34]. The second part is to find the elite, the Nth child, which is not mutated. To make the selection
process more robust against noise, we make each agent from the parent group play the game R2 times and
obtain the average scores Eavgj . The top-1 agent, i.e. the one with the highest average score Eavgj , is selected as
the elite child.

8. Experiments and results

We first demonstrate the quantum advantage of VQC with amplitude encoding in the standard benchmark
Cart-Pole environment. Then, we show the capabilities of our hybrid TN-VQC architecture in processing a
larger dimensional input state in a MiniGrid environment. The procedure of evolutionary optimization is
the same for both experiments.

8.1. Cart-Pole
In this experiment, we set the number of generations to be 1700, the population size N = 500, the truncation
selection number T= 5, the mutation power σ= 0.02, the number of repetitions (for evaluating all the
agents) R1 = 3 and the number of repetitions (for evaluating the parents) R2 = 5. The simulation results of
this experiment are shown in figure 8. It can be seen that after about 250 generations, the average score of the
top-5 agents is steadily above 400, and after around 1300 generations, the top-5 agents all converge to the
optimal policy and reach a score of 500, which corresponds to the maximum number of steps allowed in the
environment.

A notable achievement is that we use only 26 parameters to reach the optimal result, which is less than
those required in typical classical neural networks by at least one order of magnitude. Empowered by
amplitude encoding as well as the nature of VQC, we significantly reduce the number of parameters in this
specific problem. It is thus highly desirable to explore the feasibility of applying such an encoding method to
other quantum RL problems, which could bring about a quantum advantage as a way of reducing the model
complexity as quantified by the number of parameters to as small as poly(logn), in contrast to the poly(n)
parameters typically required in standard neural networks where n is the dimension of the input vector [86].

8.2. MiniGrid
Here, we consider three configurations, as shown in figure 2. The observation is a 147-dimensional vector,
and there are six possible actions, as described in section 3.2. In this experiment, we employ hybrid TN-VQC
architecture combining MPS and VQC. The MPS feature extractor receives the 147-dimensional input state
from the environment and outputs an 8D vector to be encoded into the VQC. Empowered by the TN
method, we successfully compress the large input vector into a small vector representation favorable for
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Figure 8. Performance of the VQC in the Cart-Pole environment. Left panel: average score of the top-5 agents at each generation.
Maximum steps allowed in this environment is 500. Right panel: gray area represents the standard deviation of rewards in each
iteration during exploration with the standard RL reproducible setting for stability. Mean and standard deviation values are
calculated from the raw scores (rewards) in the past 100 generations.

quantum circuit processing. This opens the possibility of studying other complex RL problems with
quantum circuits via applying this dimension reduction technique. We set the number of generations to be
500, the population size N = 500, the truncation selection number T= 10, the mutation power σ= 0.02, the
number of repetitions (for evaluating all the agents) R1 = 3 and the number of repetitions (for evaluating the
parents) R2 = 5. For comparison, we provide the following three model configurations: TN-VQC with bond
dimension χ= 1, TN-VQC with bond dimension χ= 2 and a baseline NN-VQC. The neural network in the
baseline NN-VQC model is a single-layer fully connected NN, which is similar to the structure of the TN
used in TN-VQC models. The performance of our hybrid TN-VQC model in the three MiniGrid
environments, MiniGrid-Empty-5x5-v0, MiniGrid-Empty-6x6-v0 and MiniGrid-Empty-8x8-v0 are
shown in figure 9.

In the MiniGrid-Empty-5x5-v0 environment (with a maximum score of 0.955), the simplest of the
three, it is clear that the average score of the top-5 agents is able to reach near-optimal value in less than 40
generations. It can be observed that the TN-VQC model with χ= 2 converges faster and achieves superior
performance than the other two models. In addition, both TN-VQC models demonstrate superior
performance than the baseline NN-VQC model. In the MiniGrid-Empty-6x6-v0 environment (with a
maximum score of∼0.956), which is harder than the previous one, we observe that for the best-performing
model (TN-VQC with χ= 2), the average score of the top-5 agents rises above 0.9 in 40 generations and
reaches near-optimal value after around 120 generations. It can be observed that the NN-VQC model
performance is inferior to the TN-VQC with χ= 2. The TN-VQC with χ= 1 produces the worst
performance in this environment. In the MiniGrid-Empty-8x8-v0 environment (with a maximum score
of∼0.961), the most difficult one among the three, it can be seen that for the TN-VQC model with χ= 2, it
takes about 350 generations for the average score of the top-5 agents to rise and stay steadily above 0.9. It is
clear that our model performs the worst in the last environment in terms of both the convergence speed and
the final scores. Surprisingly, the TN-VQC model with χ= 1 performs best among the three models. It
requires fewer generations to achieve a higher score.

9. Discussion

9.1. Relevant studies
Early work on quantum RL can be traced back to [111], which needs to load the environment into quantum
superposition states. This is not generally applicable to classical environments. In [112], the authors consider
the situation where computational agents are coupled to environments that are quantum-mechanical. More
recent studies introduce and facilitate the use of VQCs in the applications of RL [29–33]. In contrast to the
present study, they all use gradient-based methods to optimize the policy and/or value function. For the
Cart-Pole testing environment, which has been studied in both [31, 32], we observed that these two works
and ours all reach the optimal solution. However, our model requires only two qubits, fewer than the models
in [31, 32], where a four-qubit VQC architecture is necessary. An interesting research direction is to what
extent gradient-free or gradient-based actually affects the performance of VQC in RL problems. Could
certain VQC architectures benefit more from a particular kind of optimization method? We will leave this for
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Figure 9. Performance of the hybrid TN-VQC in the MiniGrid environments. Left panels: average score of the top-5 agents at each
generation. Right panels: gray area represents the standard deviation of rewards in each iteration during exploration with the
standard RL reproducible setting for stability. Mean and standard deviation values are calculated from the raw scores (rewards) in
the past 100 generations. We present three model configurations for each environment: TN-VQC with bond dim χ= 1, TN-VQC
with bond dim χ= 2 and NN-VQC.

future investigation. For a more detailed review of recent developments in quantum RL, we refer interested
readers to [69, 113].

9.2. Complex benchmarks
In this work, we further extend the complexity of the testing environments in comparison to previous works,
including [29], which considers discrete observation/states. In particular, we largely push the boundaries of
quantum RL via incorporating quantum-inspired TN into a VQC-based architecture. Despite its success,
there is still a significant gap between current quantum RL and classical RL in terms of the capability of
processing high-dimensional inputs. Future research directions may include the application of various TN
architectures, such as MERA, PEPS or tree tensor networks for processing complex or high-dimensional
inputs. For example, a recent development of the MERA-based quantum convolutional neural network [114]
may inspire the next-generation design of quantum RL agents.
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9.3. Evolutionary quantum circuits
The use of evolutionary methods in optimizing quantum circuits can also be found in these recent works
[39, 115, 116]. Both [39, 115] use evolutionary methods to optimize VQE problems. Notably, [39] introduces
an evolutionary approach involving structural mutation to optimize the quantum circuit. On the other hand,
[116] utilizes a graph-encoding method to encode a quantum circuit and then adopts an evolutionary
method to optimize the quantum model for certain classification tasks. However, none of these works
considers the direct application of evolutionary optimization to quantum RL problems. Our work not only
demonstrates the first successful implementation of an evolutionary method for quantum RL, but touches
on another aspect rarely studied; the end-to-end training of a hybrid model consisting of MPS and VQC.
Furthermore, the proposed framework is highly adjustable. For example, various TN architectures can be
used to replace the MPS used in this paper to fulfill the need for different classical data, as well as changing
QML tasks, such as classification, function approximation or sequential learning.

9.4. Techniques from classical neuroevolution
In the present study, we employ evolutionary algorithms specifically for optimizing the quantum circuit
parameters. In classical neuroevolution, the whole architecture as well as the neural network parameters can
be optimized through evolution. A framework called NeuroEvolution of Augmenting Topologies [117] has
been proposed for evolving the classical neural network’s topologies along with its weights. It is thus
intriguing to investigate the prospect of applying these concepts to evolving QML architectures. In order to
evolve a model with a complex architecture and a sizable number of parameters, it is crucial to encode the
model itself in an efficient fashion. Recent advances in neuroevolution [118] could serve as guidance for
designing high-performance evolutionary algorithms in QML.

A major issue yet to be addressed in our work is that our hybrid model can only achieve sub-optimal
results on harder problems. In particular, it is challenging for the current model to achieve the maximum
score when the rewards are sparse. One of the potential solutions to this issue is the novelty search developed
in classical neuroevolution [119, 120]. The idea behind novelty search is that the agent is not trained to
achieve the objective in a conventional way. Rather, novelty search rewards the agents that behave differently
[121]. In classical deep RL problems, novelty search has been shown to be capable of solving hard RL
problems with sparse rewards [122]. A potential direction for future research is thus to investigate whether
these frameworks work in the quantum regime.

Evolutionary algorithms also play a critical role in the security of RL models. For example, in [123], the
authors explore the potential of applying evolutionary algorithms to attacking a deep RL model. Hence,
another potential research direction is to study the robustness of quantum RL agents [124].

9.5. Training on a real QC
Given the fact that currently available quantum devices are still very noisy, in this research we only consider
the case of noise-free simulation. Although previous results [40–42] have indicated that VQC-based
algorithms may be resilient to noise through the absorption of this undesirable effect into tunable
parameters, with the limitation of current cloud-based quantum computing resources, it is impractical to
implement the whole training process on a real quantum device to verify customized models such as the
proposed TN-VQC. Furthermore, different noise mitigation schemes for TN-VQC are necessary and require
further study. We expect that these issues can be resolved when commercial quantum devices become more
reliable and accessible.

10. Conclusion

In this study, we present two quantum RL frameworks based on an evolutionary algorithm, of which one is
purely quantum and the other has a hybrid quantum-classical architecture. In particular, we study two input
loading schemes that can reduce the required qubit number of the VQC; amplitude encoding and TN
compression, and demonstrate through numerical simulation the performance of each. First, through the
Cart-Pole problem (with an input dimension of 4), we show that with amplitude encoding, a framework
based on a VQC can provide a quantum advantage in terms of parameter savings. With a proper design of
the quantum circuit, it is possible to reduce the number of parameters to the scale of poly(log(n)), where n is
the input dimension. Second, through the more complex MiniGrid problem (with an input dimension of
147), and with the incorporation of a TN-based dimensional reduction method, we show the possibility of
compressing an input of a larger dimension into a representation that can be readily encoded into currently
available quantum devices. Notably, this hybrid TN-VQC model can be trained in an end-to-end fashion, i.e.
the TN and VQC parts are trained as a whole. The results of this work strongly suggest the prospect of these
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versatile and scalable frameworks, which could shed light on the future design of RL algorithms for
near-term QCs.
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Appendix A. Quantum encoding

In order for the VQC to process classical data, it is necessary to encode the data into a quantum state. There
are several kinds of encoding schemes commonly used in QML applications [86]. Different encoding
methods provide varying extent of quantum advantage. Some of them are not readily implemented on real
quantum hardware due to the large circuit depth. Here, we give the details of the two encoding methods used
in this work.

A.1. Variational encoding
We describe the quantum operation behind the variational encoding used in the MiniGrid experiment. The
initial quantum state |0⟩⊗ · · · ⊗ |0⟩ first undergoes the H⊗ ·· ·⊗H operation to become an unbiased state
|+⟩⊗ · · · ⊗ |+⟩. Consider an N-qubit system, the corresponding unbiased state is,

(H|0⟩)⊗N
=H|0⟩⊗ · · · ⊗H|0⟩︸ ︷︷ ︸

N

= |+⟩⊗ · · · ⊗ |+⟩︸ ︷︷ ︸
N

=

[
1√
2
(|0⟩+ |1⟩)

]
⊗ ·· ·⊗

[
1√
2
(|0⟩+ |1⟩)

]
︸ ︷︷ ︸

N

=
1√
2N

(|0⟩+ |1⟩)⊗N

=
∑

(q1,q2,...,qN)∈{0,1}N

1√
2N
|q1⟩⊗ |q2⟩⊗ · · · ⊗ |qN⟩. (A1)

This unbiased quantum state subsequently goes through the encoding part, which consists of Ry and Rz

rotations. These rotation operations are parameterized by the compressed representation vector
x= (x1,x2, . . . ,x8). For the ith qubit we choose the Ry and Rz rotation angles to be arctan(xi) and arctan(x2i ),
respectively, where i= 1,2, . . . ,8. After this encoding process, the next step is to go through the variational
parts as described in the main text.

A.2. Amplitude encoding
We elucidate the quantum operation behind the amplitude encoding used in the Cart-Pole experiment. We
adopt the method presented in [87], which is further demonstrated for QML applications in [86]. The
general goal of amplitude encoding is to encode a vector (α0, . . . ,α2n−1) into an n-qubit quantum state
|Ψ⟩= α0|00 · · ·0⟩+ · · ·+α2n−1|11 · · ·1⟩, where αi are real numbers and the vector (α0, . . . ,α2n−1) is
normalized. This can be achieved by inversely running the quantum routine, which transforms an arbitrary
quantum state |Ψ⟩= α0|00 · · ·0⟩+ · · ·+α2n−1|11 · · ·1⟩ into the state |00 · · ·0⟩. In [87], the authors
demonstrate the quantum routine to perform this transformation via a sequence of multi-controlled
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Figure 10. Generic quantum routine for amplitude encoding (before inversion).

rotations. Here, we follow the presentation in [86]. Consider an n-qubit system, the generic multi-controlled
rotations around the vectors vi with angles βi on the last qubit qn consists of the sequential operations of the
following 2n−1 gates:

cq1=0 · · · cqn−1=0Rqn

(
v1,β1

)
|q1 . . .qn−1⟩ |qn⟩ ,

cq1=0 · · · cqn−1=1Rqn

(
v2,β2

)
|q1 . . .qn−1⟩ |qn⟩ ,

...

cq1=1 · · · cqn−1=1Rqn

(
v2

n−1
,β2n−1

)
|q1 . . .qn−1⟩ |qn⟩ .

(A2)

In the ML applications of interest, we consider only the case where all the amplitudes are real numbers. In
this scenario, the quantum routine includes a cascade of multi-controlled Ry rotations [86]. The cascade of
operations refers to sequentially implemented multi-controlled rotations on each qubit qi in the system. For
example, the operation on the last qubit qn is shown in equation (A2). In an n-qubit system (see figure 10 for
illustration), the first operation in the cascade is the one on qubit qn,

cq1=0 · · · cqn−1=0Rqn

(
v1,β1

1

)
|q1 . . .qn−1⟩ |qn⟩ ,

cq1=0 · · · cqn−1=1Rqn

(
v2,β1

2

)
|q1 . . .qn−1⟩ |qn⟩ ,

...

cq1=1 · · · cqn−1=1Rqn

(
v2

n−1
,β1

2n−1

)
|q1 . . .qn−1⟩ |qn⟩ ,

(A3)

where the rotation axes v1, . . . ,v2
n−1

are y-axis (Ry rotation). The second operation in the cascade is
implemented on the qubit qn−1 in a similar way,

cq1=0 · · · cqn−2=0Rqn−1

(
v1,β2

1

)
|q1 . . .qn−2⟩ |qn−1⟩ ,

cq1=0 · · · cqn−2=1Rqn−1

(
v2,β2

2

)
|q1 . . .qn−2⟩ |qn−1⟩ ,

...

cq1=1 · · · cqn−2=1Rqn−1

(
v2

n−2
,β2

2n−2

)
|q1 . . .qn−2⟩ |qn−1⟩ .

(A4)

The rotation angles βs
j can be shown to be [87],

βs
j = 2 arcsin


√∑2s−1

l=1

∣∣α(2j−1)2s−1+l

∣∣2√∑2s

l=1

∣∣α( j−1)2s+l

∣∣2
 , (A5)

where αi represents each of the amplitudes (α0, . . . ,α2n−1). To utilize the aforementioned quantum routine
to perform amplitude encoding, we can simply invert each and every operation and apply them in reverse
order on the initial quantum state |00 · · ·0⟩ [86]. We provide the example for the two-qubit system used in
our Cart-Pole experiment in figure 11.

13



Mach. Learn.: Sci. Technol. 3 (2022) 015025 S Y-C Chen et al

Figure 11. Quantum routine for amplitude encoding (before inversion) for the Cart-Pole experiment.

Appendix B. Quantum circuit evolution algorithm

Algorithm 1. Evolutionary quantum deep Q learning

Define the mutation power σ
Define the number of generationM
Define the number of truncation selection T
Define the repetition number of playing (all agents) R1

Define the repetition number of playing (top agents)R2

Initialize the population P with N individuals/agents
Initialize action-value function quantum circuit Q with random parameters θ for each individual/agent
for generation g= 1,2, . . . ,M do
for individual/agent i= 1,2, . . . ,N do
for r= 1,2, . . . ,R1 do

Reset the testing environment
Reset the cumulative reward (score) Si,r← 0
for t= 1,2, . . . ,K do

The agent selects at =maxaQ
∗(st,a;θ) from the output of the quantum circuit

Execute action at in emulator and observe reward rt and next state st+1

Record the reward Si,r← Si,r + rt
end for

end for
Output the average score of the agent after playing R1 times as Savgi = 1

R1

∑R1

r=1 Si,r
end for
Output the top T agents according to their average scores Savgi
for c= 1,2, . . . ,N− 1 do

Randomly select an agent from the top T agents
Mutate the parameter vector θ according to the rule θ← θ+σϵ where the mutation is Gaussian ϵ∼N (0, I)

end for
for agent in top T agents j= 1,2, . . . ,T do

Playing the game R2 times
Record the average score over playing R2 times Eavgj

end for
Keep the best agent according to the average scores Eavgj as the Nth children which is the elite

end for
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