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Abstract: Sulfate-reducing bacteria (SRB) represent a group of prokaryotic microorganisms that are
widely spread in the anoxic environment (seabed, riverbed and lakebed sediments, mud, intestinal
tract of humans and animals, metal surfaces). SRB species also have an impact on processes occurring
in the intestinal tract of humans and animals, including the connections between their presence and
inflammatory bowel disease (IBD). Since these SRB can develop antimicrobial resistance toward the
drugs, including antibiotics and antimicrobial agents, bacteriophages could represent an additional
potential effective treatment. The main objectives of the review were as follows: (a) to review SRB
(both from intestinal and environmental sources) regarding their role in intestinal diseases as well
as their influence in environmental processes; and (b) to review, according to literature data, the
influence of bacteriophages on SRB and their possible applications. Since SRB can have a significant
adverse influence on industry as well as on humans and animals health, phage treatment of SRB
can be seen as a possible effective method of SRB inhibition. However, there are relatively few
studies concerning the influence of phages on SRB strains. Siphoviridae and Myoviridae families
represent the main sulfide-producing bacteria phages. The most recent studies induced, by UV light,
bacteriophages from Desulfovibrio vulgaris NCIMB 8303 and Desulfovibrio desulfuricans ATCC 13541.
Notwithstanding costly and medically significant negative impacts of phages on SRB, they have
been the subject of relatively few studies. The current search for alternatives to chemical biocides
and antibiotics has led to the renewed interest in phages as antibacterial biocontrol and therapeutic
agents, including their use against SRB. Hence, phages might represent a promising treatment against
SRB in the future.

Keywords: bacteriophage therapy; combatting corrosion; sulfate-reducing bacteria; dissimilatory
sulfate reduction; hydrogen sulfide; toxicity

1. Introduction

Bacteriophages (phages) have come into increasing prominence since there are viruses
of bacteria [1,2]. Phages as antibacterial agents can be used to treat environments, both
clinically or veterinary. The treatment can be described as phage-mediated bacterial
biocontrol [3,4], phage therapy, or bacterial therapy [5,6]. The application of antibiotics
to environments or the use of antibiotics normally employed as treatments of human
infections for other means, such as in animal husbandry, has been discouraged [7,8].
Thereby, it has become important to find alternatives to antibiotics to control undesirable
bacteria [9–13].
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Sulfate-reducing bacteria (SRB) are a group of anaerobic microorganisms that can be
present in the environment and gastrointestinal tract as a part of the intestinal microbiome
and can be involved in inflammatory bowel diseases (IBDs), including ulcerative colitis in
the human and animals [14–19]. They play an important role in this environmental sulfur
cycle, especially in the dissimilatory sulfate reduction process. Sulfur belongs to group 16
of the periodic element system, and it makes up to 0.04% of the Earth’s crust [20]. Though
≈100-fold less abundant than oxygen, sulfur nevertheless plays an important role in biology.
Most prominently, sulfur is found as a component of two of the naturally occurring amino
acids. These two, methionine and cysteine, are both essential to the functioning of all living
organisms and play unique roles in both molecular genetics and protein structure, serving
as start codons and disulfide bridges, respectively. Sulfur is found as well as an abiotic
component of environments. For example, it contributes to the formation of the minerals
pyrite (FeS2) and gypsum (CaSO4·2H2O). Biogeochemically, sulfur can take on multiple
forms involved in chemical and biological oxidation and reduction, since its oxidation
numbers range from −2 in the fully reduced state to +6 in the fully oxidized state [21].
Thus, sulfur in different forms can readily serve as electron donors (biologically, these are
sources of energetic elections) and electron receptors, thus serving in this latter case as
electron sinks, including as analogous to the role of oxygen as a final electron acceptor [22].

SRB are widely distributed in anoxic environments where they utilize sulfate as a
terminal electron acceptor, reducing them to sulfides [23–27]. They inhabit terrestrial and
aquatic ecosystems, and they are part of the microbiota of animals and humans [28–32].
As decomposed organic substances serve as the electron donor, SRB thereby represent
chemoheterotrophic, anaerobically respiring bacteria. The metabolite that results from this
anaerobic respiration is known as hydrogen sulfide (H2S), and it is chemically analogous
to water as the metabolic byproduct of aerobic respiration (water (H2O)). Unlike water,
which represents hydrogen’s most commonly fully oxidized state, H2S can still be oxidized
by sulfur bacteria, serving in this case as an energy-carrying electron donor. H2S also can
be released into the atmosphere as hydrogen sulfide gas [22].

H2S production and release in the course of anaerobic respiration of SRB causes a
wide range of issues. For example, SRB found in marine sediments are the cause of sulfur
presence in petroleum, generating so-called “sour” crude oil vs. the preferred “sweet”
crude oil. SRB-released H2S is associated as well with the corrosion of steel components
of machines used during oil extraction, transport, and processing [33]. In addition, SRB
are part of the human and animal intestinal microbiome. Desulfomonas pigra, now called
Desulfovibrio piger, was first isolated in 1976 as the part of the intestinal microbiome [34].
Notably, the sulfide resulting from the presence of these bacteria damages oral mucosa and
intestinal cells, with SRB thereby potentially giving rise to bleeding diarrhea, weight loss,
periodontitis, or even ulcerative colitis [35–42].

Whether as contaminants of oil processing infrastructure or components of the human
intestine microbiome, reducing loads of SRB can be desirable. Bacterial resistance to an-
tibiotics has become increasingly prevalent, leading to less effective outcomes of antibiotic
treatments, and there is a need for the antibiotic use reduction. The studies are indicating
the antibiotic resistance of Desulfovibrio desulfuricans isolated from people with colitis [43].

The aim of the review is to characterize the harmful effects of SRB on both infrastruc-
ture and humans, to provide an overview of the current state of SRB–phage research, and
to explore the potential for bacteriophages to be used in the control of SRB.

2. SRB Categorization and Characteristics

Sulfate-reducing bacteria (SRB) include a wide range of otherwise unrelated prokary-
otic organisms. They mainly belong to the Bacteria, but also are found among the Archaea.
There are 220 known species divided into 60 genera [44,45]. SRB use sulfate as a termi-
nal electron acceptor during the dissimilatory sulfate reduction process. The different
organic compounds are used as an electron donor and carbon source by SRB. For example,
these organic substances include acetate, ethanol, glucose, lactate, malate, and propionate,
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depending on the species, which collectively serve as electron donors and which also
are oxidized to various distinct end products depending on species [22]. The resulting
metabolic pathway—movement of electrons from an organic substance to sulfate ions,
giving rise to H2S—is called dissimilatory sulfate reduction, meaning that the resulting
reduced sulfur is not assimilated into these organisms but instead is released as a waste
product. Examples of different types of sulfate-reducing prokaryotes and their families
according to Brenner et al. (2005) are presented in Table 1 [44].

Table 1. Some types of sulfate-reducing bacteria (SRB) [44].

Species Phylum Order Shape Gram Staining Mobility

Desulfovibrio piger Proteobacteria Desulfovibrionales rods negative no

Desulfovibrio desulfuricans Proteobacteria Desulfovibrionales vibrios negative yes

Desulfovibrio vulgaris Proteobacteria Desulfovibrionales vibrios negative yes

Desulfobacter hydrogenophilus Proteobacteria Desulfovibrionales oval rods negative yes

Desulfobulbus propionicus Proteobacteria Desulfovibrionales elliptical rods negative yes

Desulfotomaculum acetoxidans Firmicutes Clostridiales rods positive yes

Caldivirga maquilingensis Crenarchaeota Thermoproteales rods – yes

2.1. Class Deltaproteobacteria

SRB include microorganisms displaying different shapes, sizes, metabolic pathways,
cell wall types, and more [44,46–48]. However, a dominating component of SRB taxonomy
consists of the members of the Gram-negative bacteria, class Deltaproteobacteria of phylum
Proteobacteria, including the SRB-containing orders Desulfovibrionales and Desulfobacterales.
The division is largely based on 16S rRNA gene sequencing [44]. Members of order
Desulfovibrionales are motile, anaerobic rods that are mostly mesophilic or thermophilic, and
rarely psychrophilic. The order Desulfobacterales is more morphologically diverse than the
order Desulfovibrionaceae, including not only rods but cocci and filamentous bacteria as well.
They are mobile, thermally mesophilic, and sometimes psychrophilic. Slightly curved rods
of Desulfobacterales mainly use lactate as an electron donor that is further oxidized to acetate,
and they also require vitamins to grow. This order occurs in anoxygenic aquatic habitats.
The Desulfobacterales family Desulfobulbaceae includes the genus Desulfobulbus. These lemon-
shaped rods populate water sediments (both freshwater and marine water). They use
mainly propionate as an electron donor that oxidizes incompletely to acetate [44,45].

The Desulfovibrionaceae family consists of the following genus: Bilophila, Desulfobac-
ulum, Desulfocurvibacter, Desulfocurvus, Desulfohalovibrio, Desulfolutivibrio, and Desulfovib-
rio. Desulfohalobiaceae, a family within the order Desulfovibrionales, embraces the genera
Desulfohalobium, Desulfonatronospira, Desulfonatronovibrio, Desulfothermus, Desulfonauticus,
Desulfovermiculus, and Desulfohalophilus [44,48]. The Desulfovibrionaceae family consists
of mesophilic organisms that oxidize organic substances to acetate, most of which have a
vibrio shape and one polar flagellar. An important representative is the genus Desulfovibrio,
since this genus is the most often found in the environment (it encompasses the majority
of species, and they are the most often found within the human and animal intestinal
microbiota, especially among patients with developed intestinal bowel diseases) [44,49].
Desulfovibrio piger, which in contrast to D. desulfuricans consists of non-motile straight rods,
represents the most abundant SRB in the human gastrointestinal tract [34]. This species in
particular has been found to be present at significantly higher levels in patients suffering
from chronic bowel inflammation [50,51]. By contrast, Desulfovibrio ferrophilus occurs in
the marine environments that are oxygen free, where it forms crusts on the iron surfaces,
resulting in corrosion. Both species are using iron as an electron donor [52]. Desulfopila
corrodens requires an organic substrate to grow, such as acetate [53]. The family Desul-
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fohalobiaceae also includes the genus Desulfomonas, an irregular, immobile rod found in
human stool [32,54].

2.2. Other SRB-Containing Taxa

Sulfate-reducing bacteria are also found in other bacterial taxa. The genus Desulfo-
tomaculum belongs to phylum Firmicutes, class Clostridia, order Clostridiales, and the family
Peptococcaceae. These are spore-forming Gram-positive bacteria presenting morphologically
as straight or curved rods. Their spores are oval, terminal, and subterminal. In terms of tem-
perature sensitivity, both mesophilic and thermophilic species are included. For example,
they occur in soil or deep sea sediments [55]. Among the SRB also is genus Thermodesulfovib-
rio, which belongs to the bacterial phylum Nitrospirae. These strict anaerobes have entirely
been isolated from hot springs and hydrothermal vents [56]. In the domain Archaea,
sulfate-reducing representatives (some authors use the term SRM—sulfate-reducing mi-
croorganisms) are found among the Crenarchaeota, which is a phylum historically associated
with sulfur-based metabolisms [21].

3. SRB Impact on Environments and Humans

SRB are found in a wide variety of water and soil habitats where the environment
is oxygenated and sulfates are available. They occur in freshwater, marine or brackish
waters, in wetlands, hot springs, oil wells, and in sewers. Up to fifty percent of the
mineralization of organic matter in the continental shelf is due to dissimilatory sulfate
reduction. The resulting sulfite metabolite is oxidized by sulfur-oxidizing bacteria in the
same environment [57]. The impact of SRB on the environment can be overseen through
the fact that Desulfovibrio desulfuricans has been found to be able to methylate mercury
(MeHg) [58]. The release of MeHg in marine environments occurs under anaerobic (or low
oxygen) conditions, and the methylation of Hg(II) in freshwater systems is mainly done by
sulfate-reducing bacteria or iron-reducing bacteria [59].

3.1. Sewer System Negative Impacts of SRB Action

Sewer systems are by nature nutrient-rich and are therefore home to a wide range of
microorganisms, including SRB that grow either in sediment or biofilm at the bottom of the
pipes. Problems are caused by their H2S production. It diffuses from the lower layers of the
biofilm up to the oxic conditions, where it is oxidized biologically (for example by bacteria
of the family Thiomonas and Thiobacillus) or instead abiotically [60]. Abiotic oxidation of
sulfide represents the oxidation where physico-chemical processes are included, meaning
that the reduced iron and/or manganese oxidation leads to the improvement of the kinetics
of sulfide oxidation with the formation of oxidized metals [60]

The resulting sulfates (based on the SO4
2− ion) and sulfuric acid (H2SO4) react with

concrete, which is a material frequently used for the construction of sewers. One of the
common components of concrete is gypsum (CaSO4), which comes into contact with
sulfates corrodes to ettringite (Ca6Al2(SO4)3(OH)12·26H2O) [61]. Ettringite expands and
causes cracks and loss of concrete coherence. Due to the production of sulfuric acid, pH
also decreases, resulting in biofilms formed by acidophilic microorganisms, which further
increases the surface acidity. H2S and acetate produced by SRB are lowering pH on the
metal surface. This process could lead to a higher corrosion rate [62]. Additionally, sulfane
threatens the health and life of sewer workers [63,64].

Constantly, new strains of SRB are found, such as Desulfovibrio vulgaris strain Hilden-
borough (isolated from sediment of a heavy metal impacted lake). Bacteriophages related
to specific SRB are also usually revealed with new strains [65,66].

Already in 1973, scientists from the University of Kansas observed phage-infecting
Desulfovibrio vulgaris. Bacterial cells were stressed by both UV radiation and mitomycin C.
At first glance, no lysis was observed after antibiotic addition, but the size of individual cells
increased and appeared more pleomorphic. Therefore, the suspension was centrifuged sev-
eral times, and then, the pellet was examined under an electron microscope. The observers
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were not sure whether they were phage, but they mention that “particle morphology is typ-
ical of phage belonging to Bradley Group A” [67]. The differences among bacteriophages of
different Desulfovibrio vulgaris strains can be overviewed through the differences between
D. vulgaris NCIMB 8303 and D. desulfuricans ATCC 13541. These strains showed different
restriction enzyme cleavage patterns and different protein profiles [65–67].

Rapp and Wall (1987) found phage capable of gene transduction in Desulfovibrio
desulfuricans. It was observed that the virus is capable of transferring rifampicin and
nalidixic acid resistance between strains [68]. A lytic bacteriophage was isolated in 1988
in Japan. Scientists separated phage from muddy sediment samples collected at low
tide and tested it on a laboratory strain of Desulfovibrio salexigens. Based on electron
microscope observations, they reported that these viruses have a regular icosahedral head
and a long non-contractile flagellum. They were morphologically similar to coliphage λ,
which is a member of the family Styloviridae. The nucleic acid has been characterized as
dsDNA [69,70].

In the early 1990s, further attempts were made in Kansas to induce lysogenic phages
in Desulfovibrio vulgaris, which is a strain of Hildenborough and Desulfovibrio desulfuricans.
This was successful, based on restriction analysis and DNA hybridization, and it was
found that the viruses of the two organisms did not share DNA homology and thus
probably did not share a common ancestor. Further research has focused on comparing
strains of D. vulgaris Hildeborough, which has been described in earlier studies, and
strain DePue, which was isolated from sediment of a heavy metal contaminated lake.
The sequence similarity of the 16S rRNA gene was over 99%; however, the DePue strain
had a significantly reduced genome compared to the previous one. Its genome lacked
most of the genes that were annotated as phages or phage-related in strain Hildeborough.
Strain DePue were also susceptible to prophages induced in the Hildeborough strain. This
correlates with the finding that DNA does not contain prophages related to those induced.
The analysis indicated that prophages have a strong influence on the overall genome of
individuals of this species; perhaps, they may also provide a selective advantage in certain
environments [71,72].

Research into SRB-targeting bacteriophages may have practical implications in sup-
pressing and controlling their population. The cell can prevent the virus from being infected
in the first step of the phage process by preventing the phage adsorption to the cell. The
structure of the receptor to which the bacteriophage binds may be mutated, or the receptor
may be masked by other proteins, but the phage may adapt to this change [73]. Bacteria can
secrete into the extracellular space a polysaccharide matrix that forms a physical barrier be-
tween the bacteriophage and the microbe. However, some phages are able to enzymatically
cleave this barrier or use the matrix itself as a recognition site [74]. Sometimes, bacteria
produce competitive receptor inhibitors. These substances naturally occur in the vicinity
of bacteria and can specifically bind to receptors that then are unusable for phages [75].
Mostly, bacteria and archaea contain a restriction modification system that prevents the
cell from foreign DNA. Restriction enzymes in the cytoplasm recognize and degrade un-
methylated DNA. In some cases, nucleic acid is methylated by methylase, causing a loss of
sensitivity of bacteriophage DNA to restriction enzymes [76,77].

3.2. The Relationship between Iron Corrosion and SRB Presence

Another material that corrodes as a result of SRB action is metallic iron (Fe0), including
as a component of steel. Iron corrosion in the presence of SRB is accelerated [53]. Corrosive
SRB prefer the direct consumption of electrons derived from iron than from H2 [78,79].
According to this theory, the iron in contact with water loses positive ions and thereby is
polarized. In an anoxic environment, the released electrons then combine with protons
dissociated from water to form H2. This remains in equilibrium on the metal surface.
However, this equilibrium is perturbed by SRB utilizing H2, resulting in a driving of the
reaction instead toward further metal oxidation. Other possible corrosion mechanisms
have been proposed. More than a decade ago, a study suggested that bacterial strains that
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use iron as a direct electron donor without a hydrogen intermediate can also be involved
in corrosion [80,81]. These strains include species later called Desulfovibrio ferrophilus and
Desulfopila corrodens. Electrons are also gained through the formed crust of iron sulfate
(FeS) and ferrous carbonate (FeCO3), and they form a conductive mixture. Since SRB
damage worldwide pipelines and result in hundreds of millions of dollars lost annually,
bacteriophage treatment of SRB can reduce these costs significantly. It is well known that
corrosion control is a big economic issue [82].

3.3. Oil and Gas Industry

SRB can be found both below and above the ground, and their presence raises several
problems in terms of oil extraction and processing. For example, their presence within oil
extraction and processing equipment raises several problems due to the aforementioned
corrosion of metals. This results in damage to numerous equipment components, thereby
increasing costs. In addition, metabolites such as H2S are dangerous for workers associated
with this sector. By burning oil, the sulfur it contains—another consequence of SRB action,
which in this case occurs predominantly below the ground—also gets into the atmosphere,
resulting in the acidification of rain by the oxidation of H2S to sulfuric acid [78].

As noted in the Introduction, in the mining industry, oil is classified according to its
sulfur content into “sweet” (sweet crudes), common, and “sour” (sour crudes). Sweet
crudes, so named owing literally to its sweet taste, can contain by convention a maximum
of 0.5% sulfur, and this is both the highest quality and the most valued of crude oils. By
contrast, ordinary crude oil contains 0.5–1.5% sulfur, and crude oils containing even higher
percentages of sulfur are considered to be sour. Sulfur content not only can lead to the
formation of H2S, it also has to be removed from oil prior to burning, and doing so is
costly. Oil “acidification” is often associated with the tertiary phase of oil extraction, that
is, when oil from wells no longer reaches the surface without additional pressurization.
That additional pressurization is accomplished via what is known as the irrigation method,
and this involves the pumping of sea water into wells to increase volumes and therefore
pressure levels. A mixture of water, oil, and natural gas is formed by this process, which
is subsequently fractionated on the surface, and the released water again forced into the
deposit. In this way, the extraction of residue oil is achieved, which would not be otherwise
achievable due to pressure loss. However, by introducing sea water, a certain amount of
sulfate and SRB enters into the well. Then, this can significantly increase the content of
sulfide due to SRB metabolic activity [83].

3.4. Intestinal SRB and Their Association with Diseases

SRB are a natural part of the colonic microbiota of animals and humans [84–89]. They
are involved in the utilization of H2 produced in the intestine as a result of the fermentation
of sugars. Intestinal SRB use organic compounds as an electron donor [90–93]. In this
respect, they have a competitive relationship with other H2 metabolizing organisms for the
acquisition of electrons, namely methanogenic archaea (for example, Methanobrevibacter
smithii). The availability of sulfate, which also is a component of food, plays important
roles in intestinal SRB growth as well. Endogenous sources of sulfate, such as mucin or
chondroitin sulfate, are also present in the intestine but must be treated by the lytic action
of other bacteria such as clostridia [94].

The defining metabolic by-product associated with SRB is, of course, H2S [95–97]. At
higher concentrations, H2S has carcinogenic and toxic effects on intestinal cells. It also
blocks the binding of oxygen to cytochrome c and inhibits its functionality [98,99]. By
binding to heme a3 cytochrome, the binding of oxygen is disabled and thereby causes
oxidative phosphorylation, interrupting the formation of ATP [99]. H2S also acts muta-
genically on DNA and, by its ability to reduce disulfide bridges, it can also disrupt protein
structures [99–103]. SRB are often associated with idiopathic intestinal inflammation, such
as ulcerative colitis. In this disease, an increased amount of SRB [101] and an increased
concentration of H2S have been found as compared to healthy patients [102,103]. However,



Appl. Sci. 2021, 11, 735 7 of 16

the results are not showing fully unambiguous correlations. On the other side, the high
prevalence of intestinal bowel disease among inhabitants, especially in Western coun-
tries, emphasizes the importance of studies dealing with SRB occurrences as well as their
intestinal environments [84–86].

Bacteria are constantly developing new anti-phage defenses, due to which phages
go through constant evolution, too. Anti-phage systems are mainly based on protein
components that mediate defense. Protein involvement in anti-phage bacterial systems
is the most understood bacterial defense against phages. Chemical anti-phage defense
systems are widely developed in Streptomyces [104]. Another common bacterial anti-phage
system is the microbial cell surface modification that does not allow phage attachment.
The CRISPR–Cas defense system represents a more advanced anti-phage bacterial strategy,
since it is based on phage sequences, capturing and using it to prime a response that
inhibits phage growth. The addition of methyl groups to DNA and degrading other DNA
without methyl groups is another bacterial tactic against phages. Certainly, there are also
other more specific bacterial single cell developed anti-phage systems and strategies [105].

Epithelial cells secrete mucin, which creates a chemical and mechanical barrier against
bacteria, while also lubricating the intestines and hydrating them. These glycoproteins
contain the rigid MUC2 protein. H2S degrades the structural integrity of mucous layers by
reducing the disulfide bridges that bind mucin units. This causes a decrease in polymer
binding, and bacteria can therefore more easily reach the epithelial cells where they can
induce an immune response or directly damage the cells [103].

3.5. Research in the Field of SRB Bacteriophages

All of the above negative effects associated with H2S production lead to considerations
of how to suppress SRB metabolic activities [106–113]. Alternatively, it may be possible to
combat the nuisance of SRB through the use of bacteriophages [10,65,66,70]. Superinfection
(SI) exclusion systems are complexes of proteins in the membrane that prevent viral DNA
from penetrating to the cell. These proteins are often encoded by prophage genes and are
intended to counteract the body’s superinfection, preventing the bacterium from being
infected with the same or a similar virus several times, thereby reducing the viability of an
already infected bacterium [76].

Viruses in total are the most abundant group of “organisms” in the world with the
amount measured microscopically in aquatic systems present, e.g., at 107 per milliliter [114],
which is somewhat higher in sediments [115]. The total population is estimated to be 1031

entities [116]. Given the great abundance of bacteria, most of these viruses are thought to
be bacteriophages.

Bacteriophages can be divided in two main groups [117]: tailed and tailless. They
can also be distinguished into a number of different infection types [118]: lytic phage,
chronic phage, and latent phage. Lysogenic cycles are associated with what are known
as temperate phages [67], while phages that are unable to display lysogenic cycles, but
instead only lytic cycles, can be described as strictly or obligately lytic. Temperate phages
are of interest especially due to their ability to modify bacterial hosts both genetically and
phenotypically [68,70–72], whereas strictly lytic phages ideally are what is employed for
phage-mediated biocontrol and phage therapy. It is thought that most phages are lytic
(whether strictly lytic or instead temperate); in nature, both types of phages serve as natural
antagonists of bacteria.

Since H2S is produced by SRB and it represents the harmful compound in the environ-
ment, phages represent an important factor for the elimination of SRB genera. The main
sulfide-producing bacteria (SPB) phages belong to families of Siphoviridae and Myoviridae.
Phage activities toward SPB are the most effective at 30 ◦C and less effective at 20 ◦C [119].
The lysogenic bacteriophage belonging to Styloviridae (Siphoviridae is a new name according
to the ICTV (International Committee on Taxonomy of Viruses)) lyses salt-requiring SRB,
Desulfovibrio salexigens [70].
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Bacteriophages are responsible for 60–70% of all problems occurring during the fer-
mentation of different food commodities (bacteriophages can delay and inhibit fermen-
tation processes) [120]. Spontaneous fermentation is changed with starter cultures due
to more controlled processes. Lactobacillus plantarum strains (mainly used in vegetable
fermentation) were found to be 25% sensitive to bacteriophages [121]. However, there
is a difference in phage infection rate. Phage infection rate is considered fast if bacterial
lysis occurs within 2 h after infection [122]. Bacteriophages found during fermentation
processes are usually eliminated after 30 min treatment at 80 ◦C and 90 ◦C (they can survive
the time and temperature used in standard food pasteurization). It means that they are
resistant to the environments during food fermentation, especially because it was found
that bacteriophages grow under broad pH values [123]. When phages titer increases over
106 PFU/mL, the fermentation is usually inhibited [124].

As outlined in previous sections, a number of taxa include members that are sulfate
reducing, and these bacteria can be found within a variety of contexts, where in some
of those contexts, they can be problematic, e.g., such as due to negative impacts on in-
frastructure (e.g., pipes) or health (e.g., the human intestine). As generally, it is thought
that all or at least most bacteria types possess at least one associated phage, it should be
assumed that most or all SRB also have associated phages. A variety of methods exist
toward phage discovery, the most traditional of which is simply isolation as plaques against
a given bacterial host [118]. Generally, this isolation is most conveniently and therefore
most typically takes place when working with bacteria that are able to readily form lawns
on agar surfaces. For bacteria requiring anaerobic environments for growth, phages are
still readily isolated and propagated, e.g., as within anaerobic chambers. Generally, many
more phages have been isolated, and their role in bacterial infection has been studied. Here,
we provide a comprehensive overview of SRB-infecting phages isolated from specific SRB
hosts.

Previous studies induced bacteriophages from cultures of Desulfovibrio vulgaris NCIMB
8303 and Desulfovibrio desulfuricans ATCC 13541 by UV light. The UV effect during 9 to 10
h resulted in the phage maximum yield. Nucleic acids of phages from both cultures (D.
vulgaris NCIMB 8303 and D. desulfuricans ATCC 13541) were cut by restriction endonucle-
ases (specific for double-stranded DNA). DNAs of phages from these two cultures showed
different restriction enzyme cleavage patterns. The homology was not noticed between a
25 kb phage DNA of D. vulgaris and D. desulfuricans. The protein profiles of isolated phages
from these two cultures were also analyzed, and it was found that the D. vulgaris phage
contained two major bands (Mr values of 37,000 and 56,000) and the D. desulfuricans phage
contained only one major band (Mr 38,000) [125].

Bacteriophage isolated from D. vulgaris was defined through establishing a preliminary
endonuclease restriction map. The mapping succeeded in linking four BamHI fragments
into two DNA segments, though not linking was detected between the two segments. The
obtained results from the authors lead to the conclusion that two phages were induced
from D. vulgaris culture. The results in the study were supported by the size approximation
of restriction enzyme fragments, electron micrographs, and density gradients [126].

4. Possibility of Application of SRB Bacteriophages in Practice

Using bacteriophages as an antibacterial method has some advantages. Due to specific
absorption to only certain receptors on the cell surface, they attack only the genus, species,
and sometimes only one particular bacterial strain. Therefore, unlike antibiotics, they do
not destroy other microorganisms in the body that may be useful to organisms. At the
same time, the virus consists only of proteins and nucleic acids, which thus does not cause
side effects after degradation [127].

The development of new biotechnology and pharmaceutical products is possible with
the use of bacteriophage particles. Bacteriophage therapy as the antimicrobial treatment,
especially against resistant bacterial infections had been known before, recently has been
rediscovered again, since phage-based vaccination represents one of the most promising
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preventive strategies. That is the reason and necessity for the constant discussions and
research studies concerning the biological nature of phages, including phage therapy, drug
delivery, tissue engineering, food biopreservation and safety, biocontrol of plant pathogens,
vaccines and vaccine carriers, biofilm and bacterial growth control, surface disinfection,
corrosion control, and other important fields of phages impact [128].

On the other hand, recent achievements in nanotechnology are improving the pos-
sibilities for phage manipulation. The essentials for the new science field, such as bio-
nanomedicine, are of crucial importance to control the physical, chemical, and biological
properties of materials. Phages, similar to viruses, represent a promising nanomaterial that
can be manipulated with great precision, since phage particles are formed according to the
genetic information (in protein shells), and their sizes and shapes are precisely defined.
Genetic engineering and chemical modification allow the control of the composition and
surface properties of phage particles. These modifications can lead to the improvement
and better quality of human health [129].

It is certain that new phage therapies will have to solve problems, such as potential
phage toxin elimination, inadequate phage purification, and the limited knowledge of
relations between humans and phages. Control clinical studies are necessary for the
application of new phage therapies; these studies are always costly and time consuming,
but they are regulated by states’ laws. The researches and systematic reviews about phages
represent steps toward better understanding of phages interactions with host cells [130].

Another disadvantage of phage therapies is a lack of systematic studies about phage
pharmacokinetic data. According to animal studies, phages end most often in the liver,
although there is some trapping in the spleen [131]. It is possible to choose some phage
strains that are capable of remaining in the circulation and act constantly against bacterial
infections [132,133], the same as strains with a reduced immunogenicity (the reduction
of phage adverse reactions). So-called “platform” phages and “dual” specificity phages
would be necessary to be developed or engineered, free of antibiotic-resistant genes and
toxins [130,134].

Phages also act locally at the site of host bacteria. The phage particle produces over
a hundred new virions in a single cycle, these viruses again attack neighboring bacteria,
and the number of phages destroying bacteria increases exponentially. The use of phages
with antibiotics also reduces the chances of creating bacterial resistance to both [135].
However, phage therapy has its drawbacks. One of its greatest weaknesses is its high
specificity. In order to initiate therapy, it is necessary to know the pathogen that caused the
infection. In acute cases, it is excluded. In these cases, the application of a phage cocktail or
polyvalent phage may be considered, but antibiotic formulations have superiority in the
rate of action [136].

Certain criteria for a suitable phage preparation must be followed to avoid unwanted
side effects of therapy. It is necessary to identify and classify the phage according to the
ICTV system, using mainly DNA sequences or electron microscopy. Therapeutic phages
should be able to reproduce by lytic life cycle. The effect of lytic phages is faster, because
they always destroy cells directly, and also, there is less chance of transduction. Propagates
that become part of the genome may inaccurately cleave to lytic cycle and transfer bacterial
genes (such as antibiotic resistance) to another individual [137]. Despite the praised ability
of phages to attack and destroy unwanted bacteria, this method has its negative side, too.
These viruses develop concurrently with their hosts as part of evolutionary dynamics.
While the chances of developing bacterial resistance to antibiotics are higher than those of
bacteriophages, this chance still exists, since bacteria have different ways of dealing with
viruses. An important industry where phage phenomena are often declining against SRB is
the oil industry. Against biocorrosion, which causes enormous damage to the infrastructure
of the oil processing industry, chemical biocidal agents are often used, which are inserted
into oil pipelines to destroy harmful microorganisms. However, these preparations have
low efficacy against bacteria in biofilms, where the extracellular matrix produced by the
cells often protects them from damage [138].
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However, bacteriophages may have the ability to break down the polysaccharide com-
plexes and, consequently, to lyse the cells. The biocorrosion phage control procedure was
patented in America in 2009 [139]. First, corrosion agents in pipes and other equipment are
to be identified and isolated. Subsequently, mixtures of lytic bacteriophages will be formed,
which will inhibit the growth of (not only) SRB. Existing isolates as well as those newly
obtained from industrial and environmental samples can be used. As an ideal environment,
the text mentions water sediments, taking into account the physicochemical properties of
sediments. The exact procedure should be based on the known characteristics of the species
identified at the corrosion site. Thereafter, the effectiveness of the phage isolate against the
sample originating from the damaged sites is tested. Then, the bacteriophage lysate will be
optimized, for example by mutagenesis and targeted selection or genetic engineering. The
targeted creation of new phages is also not excluded. The patent proposes using “pigging”
to transport the product to the site. This procedure uses a cylindrical device, known as
a “pig”, to inspect and clean the tubes without stopping the flow of products therein. In
this case, the “pig” is intended to release virus-containing fluid or gel in the tubes. For
example, phages can be injected into the surrounding sediment to treat the outer surface of
the tubes [140].

It also offers a similar approach to solving the problem of “acid” oil. For the identified
SRB producing H2S, a first mix of phages against this population should be created. At
the same time, a second mixture is produced, designed, and adapted to the bacteria in
the water, which will flood the site to maintain the pressure and extraction efficiency. In
doing so, it seeks to combat two originally separate populations of bacteria that degrade
oil [140]. Two years later, the scientists have isolated two bacteriophages from marine black
sediment, where Desulfovibrio and Haloanaerobium formed a synergistic culture [141,142].

The authors of this technological procedure based their method on the phases with
a lytic cycle, to which it is suggested to add the use of biocides to achieve the greatest
effect [138]. Another option is to use prophages. In many Desulfovibrio species, several
prophage elements are present in the genome. In these viruses, the transition to the virulent
phase can be induced by stressing the bacterial cells with, for example, UV radiation
or antibiotics. According to prophage linkage within strains and same species, it seems
that one virus may be able to attack multiple strains [143]. However, overall, methods
of using bacteriophages against SRB compared to other groups are only at the beginning
of development. More data are needed both on the exact nature and interactions of
bacteriophages in biofilm, which causes bio-corrosion damage, and on the other hand, little
information on the specificities of bacteriophages targeting a diverse group of organisms
such as SRB is known.

5. Conclusions

Bacteriophages are a diverse group of viruses that infect prokaryotic organisms. The
species specificity of the phages is derived from the presence of a particular receptor on
the surface of the bacterial cell. The genetic information of most important bacteriophages
is expressed in DNA. Upon penetration of the DNA of the virus into the cell, the virulent
phages enter the lytic cycle and are tempered; they may be lysogenic or even lytic. The
research of bacteriophages has been coming to the forefront of the scientific community for
the past decade; phage model organisms such as from Escherichia coli have been extensively
studied. However, the group of SRB has become a subject of widespread interest only
in recent years. Therefore, the study of their bacteriophages and the related amount of
information have been published only to a limited extent.

SRB are a group of anaerobic organisms characterized by a metabolism using dissim-
ilatory sulfate reduction. This bacterial community reduces sulfate associated with the
oxidation of organic substrates or H2. SRB inhabit a variety of anoxic environments, which
are found in marine and freshwater sediments, in the soil, and in the intestines of humans
and animals. The excreted metabolite, H2S, is toxic, and its production by SRB presents
numerous problems to humans. Phages specialize only in a very narrow host spectrum
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and are therefore gentler on the body than antibiotics. On the other hand, it is necessary
to know the causative agent of the infection for use in clinical practice, which may take
too long. Bacteriophages are beginning to be more researched for use in medicine and
industries to eliminate unwanted microorganisms. In some sectors, this is already being
used, for example in poultry farming, but specifically, phage research against SRB is still in
its infancy, and the application is largely theoretical. It is necessary to further and more
deeply study the specifics of this issue. However, the renewed interest of the scientific
community can mean a rapid shift toward practical application.
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